

SOFTWARE

ENGINEERING:
METHODS, MODELING, AND

TEACHING, VOL. 3

Carlos Zapata, Luis Fernando Castro (Ed.)

SOFTWARE

ENGINEERING:
METHODS, MODELING, AND

TEACHING, VOL. 3

Medellín, Colombia, 2014

 005.1
 S63 Software engineering : methods, modeling and teaching / editores
 Carlos Mario Zapata y Luis Fernando Castro. -- Medellín :
 Universidad Nacional de Colombia. Facultad de Minas, 2014.
 Volumen 3 (96 páginas) : ilustraciones.

 ISBN : 978-958-775-080-5

 1. INGENIERÍA DE SOFTWARE. 2. DESARROLLO DE PROGRAMAS
 PARA COMPUTADOR. 3. MÉTODOS DE ENSEÑANZA. I. Zapata, Carlos
 Mario, editor. II. Castro, Luis Fernando, editor.

 Catalogación en la publicación Universidad Nacional de Colombia

Software Engineering: Methods, Modeling, and Teaching, Vol.3

© Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas
© Carlos Zapata © María Gomez © Nazhir Amaya
© Shihong Huang © David Brown © Andrea Jaramillo
© Pan-Wei Ng © Wiliam Arévalo © Guadalupe Ibargüengoitia
© Luis Castro © Jorge Muñoz © Hanna Oktaba
© Fabio Vargas © María González © David Cifuentes
© Paula Tamayo © Liliana González © Juan Hernández
© Roberto Manjarrés © Marcel Simonette © Jairo Aponte
© Bell Manrique © Edison Spina © Jovani Jiménez
© Gloria Gasca © Ruben Sanchez © Julián Gaviria

Primera edición: Medellín, agosto de 2014
ISBN : 978-958-775-080-5
Caratula: Corporación Cidenet

Coordinación editorial
Centro Editorial de la Facultad de Minas
Universidad Nacional de Colombia, Sede Medellín
Carrera 80 No. 65-223, Bloque M9-103
Teléfono: (57-4) 425 53 43
Correo-e: ceditorial_med@unal.edu.co

Prohibida la reproducción total o parcial por cualquier medio sin la autorización escrita del titular
de los derechos patrimoniales.

CONTENIDO

 Preface v

Part I: Theoretical development 1

Chapter 1: An executable pre-conceptual schema for a software engineering general

theory
3

Chapter 2: Essence as a Framework for Conducting Empirical Studies 9

Part II: Method and practice representation 19

Chapter 3: GBRAM from a SEMAT Perspective 21
Chapter 4: Representing Software Specifications in the SEMAT kernel 27
Chapter 5: Representation of TSP framework into the SEMAT kernel based on the best

practices of Project management from CMMI-DEV
33

Chapter 6: PSP Implementations for agile methods: a SEMAT-based approach 41
Chapter 7: Toward a standardized representation of RUP best practices of project

management in the SEMAT kernel
47

Chapter 8: RSM as SEMAT Kernel Extension for Reliability 53
Chapter 9: SEMAT-kernel-based formulation of the HAR’D Snow project practice 57

Part III: Teaching 65

Chapter 10: Identifying the scope of Software Engineering for Beginners course using

ESSENCE
67

Chapter 11: On the use of the SEMAT kernel within a software engineering course 77
Chapter 12: SoftRace—the software development race under the SEMAT kernel 91

v

SEMAT (Software Engineering Method and Theory) has

reached a new stage. By the date of this book, SEMAT offi-

cially became a new OMG standard. These are good news for

the software engineering as a discipline. In this book, we are

joining the SEMAT celebration by doing what we do best:

promoting the usage of the SEMAT kernel in as many ways

as we can. Since we Latin American researchers are also hap-

py with our new OMG standard, we devote our effort to

promote the work on the SEMAT kernel. This book is the di-

rect result of this effort. In twelve Chapters, we work on the

foundations of the software engineering theory, the creation

of SEMAT-kernel-based models, and the promotion of teach-

ing by using the ideas behind the SEMAT initiative.

This third volume of Software Engineering—Methods,

Modeling, and Teaching was written by authors coming from

five countries: USA, China, Mexico, Colombia, and Brazil.

Several points of view related to the SEMAT initiative are

promoted and a lot of different theories and examples are

prepared for the reader. Whether you belong to the Academic

world or the Industry Practitioners, this book is very helpful

for you as the seed of the usage of this new OMG standard.

This book is divided into three main parts: (i) theoretical

development, (ii) method and practice representation, and (iii)

teaching. If you belong to the Academy, probably you will be

interested in Parts (i) and (iii) more than Part (ii). If you are a

practitioner, maybe the Part (ii) will be more helpful for you.

Regardless of your point of view, we strongly suggest the

reading of the fundamental topics about the SEMAT kernel

included in this Preface, since these ideas are cross-cutting to

the entire book. Hopefully, we think you will find what you

looking for inside this book: different ways to understand,

practice, and use the main SEMAT ideas.

OVERVIEW AND KEY CONCEPTS OF ESSENCE

In this Section we give brief overview of Essence with focus-

es on describing its key concepts (Jacobson et al., 2012;

2013), namely alphas and alpha states and their applications.

The Essence constitutes the kernel along with the lan-

guage supporting the kernel. The Essence kernel includes a

stripped-down, light-weight set of elements that are universal

to all software engineering endeavors. Through states defined

for its elements, the Essence kernel provides a novel and ef-

fective instrument for reasoning about the progress and health

of the software development endeavors in a method inde-

pendent way. It helps practitioners to understand where they

are, point out what they should do next and, suggest what

they should improve and where. The kernel provides a com-

mon ground for understanding and describing the commonali-

ties and diversities of software engineering practices, and this

common ground is realized as a universal set of elements

called alphas. Presenting the essence of software engineering

in this way enables us to build our knowledge on top of what

we have known and learnt, and to apply and reuse gained

knowledge across different application domains and software

systems of differing complexity.

The benefits of using these kernel elements are that they

are harvested from existing common practices in industry, so

they already exist and prevalent in software endeavor. They

are what we always have (e.g., teams and work), what we

always do (e.g., specify and implement), and what we always

produce (e.g., software systems) when we develop software.

Even without a well-defined method, the Essence kernel can

be used to monitor the progress and health of specific soft-

ware endeavor, and to analyze the strengths and weaknesses

of a team way of working.

Alphas

Alphas (Abstract-Level Progress Health Attribute) are one of

the core concepts of Essence. Essence uses an object-oriented

approach to identify typical dimensions of software engineer-

ing challenges. These objects are called alphas. Each alpha

represents a key dimension of endeavors. Alphas are separat-

ed into three different areas of concerns, which are Customer,

Solution, and Endeavor (see Figure P1).

Preface

C.M. Zapata
Universidad Nacional de Colombia

L. Castro
Universidad Del Quindío

S. Huang
Florida Atlantic University

P.-W. Ng
Ivar Jacobson International

vi

Figure P1. Three Areas of Concerns

The Essence kernel has identified seven method-

independent alphas that are common to software develop-

ment, namely Opportunity, Stakeholders, Requirements,

Software System, Work, Team, and Way-of-Working. From

Essence OMG specification (OMG, 2014), they are defined

as follows:

• Opportunity is the set of circumstances that makes it ap-

propriate to develop or change a software system

• Stakeholders: The people, groups, or organizations who

affect or are affected by a software system

• Requirements: What the software system must do to ad-

dress the opportunity and satisfy the stakeholders

• Software System: A system made up of software, hard-

ware, and data that provides its primary value by the execu-

tion of the software

• Work: Activity involving mental or physical effort done in

order to achieve a result

• Team: A group of people actively engaged in the devel-

opment, maintenance, delivery, or support of a specific soft-

ware system

• Way-of-Working: The tailored set of practices and tools

used by a team to guide and support their work

Alphas are agnostic to practitioner’s chosen practices and

methods. For example, the team performs and plans work

does not imply any specific order in that they perform and

plan the work. These seven alphas and their relationships are

shown in Figure P2.

Figure P2. Alphas and their relationships

Alpha States

Each alpha has states that provide guidance for development

teams to achieve progress along these dimensions and to de-

tect risks and problems early.

The alpha states are the following:

 Opportunity: Identified, Solution Needed, Value Estab-

lished, Viable, Addressed, and Benefit Accrued.

 Stakeholders: Recognized, Represented, Involved, In

Agreement, Satisfied for Deployment and Satisfied in

Use.

 Requirements: Conceived, Bounded, Coherent, Ac-

ceptable, Addressed and Fulfilled.

 Software System: Architecture Selected, Demonstrable,

Usable, Ready, Operational and Retired.

 Team: Seeded, Formed, Collaborating, Performing,

and Adjourned.

 Work: Initiated, Prepared, Started, Under Control,

Concluded and Closed.

vii

 Way of Working: Principles Established, Foundation

Established, In Use, In Place, Working Well and Re-

tired.

Essence kernel provides a detailed checklist for each alpha

and their states (see Figure P3). An example of the alpha op-

portunity is shown in Figure P4.

Figure P3: Requirement Alpha and Its Selected States

Figure P4. The alpha opportunity (Jacobson et al., 2013)

As illustrated in Figure P5, both the kernel alphas and

their states can be represented as a deck of cards. These cards

may be used for monitoring the progress and health of soft-

ware development endeavors. The monitoring may also be

supported by spider graphs (SEMAT accelerator, 2014) in

Figure 5 that illustrates the common progress of all alphas.

Figure P5. Cards and progress of the alphas

Alpha states can be also arranged in a roadmap combining

the alphas and the project milestones, as shown in Figure P6.

Besides the alphas (“things we always work with”), the

Essence kernel defines activity spaces (“things we always

do”), also classified into the three areas of concern, as shown

in Figure P7.

The other element Essence kernel defines with a close set

of values is competency, encompassing abilities, capabilities,

attainments, knowledge, and skills necessary to do a certain

kind of work. The set of competencies defined by the Essence

kernel is depicted in Figure P8.

The Essence kernel does not include any instances of oth-

er elements—like the ones defined in Table P1—since such

instances are acquired by the elements in the context of a spe-

cific practice (Jacobson et al., 2013). The most important as-

sociations among elements are depicted in Figure P9.

Figure P6. Alpha states arranged in a roadmap.

Figure P7. Activity spaces.

Figure P8. Competencies

viii

Table P1. Essence kernel elements

Element Symbol Additional Information

Alpha

Provide descriptions of the kind of things that a team will manage, produce,

and use in the process of developing, maintaining, and supporting good soft-

ware. SEMAT has identified seven alphas: Opportunity, Stakeholders, Re-

quirements, Software System, Work, and Way of working and Team.

Alpha state

Is the progress and health of an alpha. Represented in a checklist. For exam-

ple the Alpha Opportunity has the following states: Identified, Solution need-

ed, Value established, Viable, Addressed and Benefit accrued.

Activity space

Represent the essential things which have to be done to develop good soft-

ware. For example, the Activity space called System use, which allows use of

system in a live environment to benefit the stakeholders.

Activity

Define one or more kinds of works items and gives guidance how to perform

these.

Competency

Encapsulate the ability to perform an activity involving the performance of

work within the software engineering process. For example the competency

testing encapsulates the ability to test a system verifying it is usable and it

meets the requirements.

Work

Product

Is an artifact of value and relevance for a software engineering endeavor. A

work product may be a document, a piece of software, a creation of a test

environment, or the delivery of a training course.

Kernel

A set of elements used to form a common ground for describing a software

engineering endeavor.

Practice

Is considered as an element group which names all Essence elements neces-

sary to express the desired work guidance with a specific objective.

ix

Figure P8. Competencies

REFERENCES

OMG. 2014. Essence Submission. Available

http://www.omg.org/spec/Essence/
Jacobson, I., Ng, P.-W., McMahon, P., Spence, I. & Lidman,

S. 2012b. The Essence of Software Engineering: the

SEMAT kernel. Communications of the ACM (10): 42-
49.

Jacobson, I., Ng, P.-W., McMahon, P., Spence, I., & Lidman,
S. 2013. The Essence of Software Engineering: Applying
the SEMAT Kernel. Addison-Wesley.

SEMAT accelerator. 2014. Available https://sematacc-
meteor-com-ddp.meteor.com/

This page intentionally left blank

Part I: Theoretical development

We must not forget that the wheel is reinvented so often because it is a very good idea; I've

learned to worry more about the soundness of ideas that were invented only once.

— David L. Parnas (Why Software Jewels are Rare, IEEE Computer, 2/96).

This page intentionally left blank

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #1, pp. 3–7, ISBN 978-958-775-080-5

1 INTRODUCTION

According to Sjøberg et al. (2008), we can build theories as a

way to gain and gather general knowledge. General theories

are proposed in several knowledge fields. General theories

are so ancient than the Science itself. For example, Keynes

(1937) proposed a general theory of employment, trying to

assess the economical behavior of employment under some

constraints; such a theory was then reviewed by Rueff (1947).

In the field of physics, Green and Laws (1433) proposed a

general theory of rods based on thermodynamics principles.

Bartels (1968) proposed a general theory of marketing, trying

to gather together some previous approaches and base theo-

ries about the subject. Köhler (1979) tried to explain arma-

ments by using a model resembling the general theory about

this subject. Recently, Frickel and Gross (2005) promoted the

debate regarding the general theory about scien-

tific/intellectual movements.

Software engineering has also been enhanced with several

attempts of general theories. Trachtenberg (1990) proposed a

general theory of software reliability by using a mathematical

model, Zerangue (1993) made the first attempt to discuss the

need for a general theory of software engineering, and Mitch-

ell et al. (1997) establish some guidelines for working with

stakeholders by defining the constructs of a theory about the

subject. Some other attempts are authored by Coleman and

O’Connor (2007), related to the software process improve-

ment, Adolph et al. (2012), for software process manage-

ment, and Medeiros and Horta (2013) for relief-based per-

spectives. Be advised that most of the previously described

attempts—with the exception of the Zerangue’s work—are

related to specific software engineering subjects. In addition,

only some model-based general theories are formally stated,

leading to a weak—or even absent—performance on proof

theory.

As the previous review reflect, the novelty of software

engineering in Sciences show its infancy in building general

theories, compared to other ancient Sciences like manage-

ment or physics.

Jacobson et al. (2013) have been promoting the SEMAT

(Software Engineering Methods and Theory) initiative, for

establishing the need of refunding the software engineering.

Some of the SEMAT ideas are used by Ekstedt (2013) and

Johnson et al. (2013) in order to promote the guidelines of

the creation of a general software engineering theory. By fol-

lowing the ideas behind the SEMAT initiative, in this Chapter

we use the so-called executable pre-conceptual schemas

(2011) for representing the main constructs of a general theo-

ry and instantiating a general theory about software engineer-

ing. We also use the ideas promoted by Sjøberg et al. (2008)

and Ekstedt (2013) for defining the concepts related to the

general theory. The instances related to software engineering

are based on the SEMAT initiative and the related kernel (Ja-

cobson et al., 2013).

The remainder of this Chapter has the following structure:

in Section 2 we propose the material and methods; in Section

3 we propose the general theory about software engineering

and we exemplify it; in Section 4 we discuss the results; final-

ly, in Section 5 we conclude and state the future work.

2 MATERIAL AND METHODS

2.1 Methodology for building the general theory

Ekstedt (2013) establishes a 3-step methodology for building

the general theory, and he provides two examples of the

methodology usage. Steps are the following:

 Scope the theory: In our case, the scope will be the soft-

ware engineering itself. We will start by explaining the phe-

nomena surrounding the software engineering and we will use

the SEMAT kernel elements as constructs for our theory.

Chapter #1

An executable pre-conceptual schema for a software engineering
general theory

C.M. Zapata
Universidad Nacional de Colombia

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #1, pp. 3–7, ISBN 978-958-775-080-5

 4

 Find casualty: The casualty will be related to the several

propositions we will have in the theory. Properties and de-

pendencies should be provided as an explanation for each

proposition. In this step we decide on using pre-conceptual

schemas in order to formalize the entire theory.

 Iterate, integrate, and keep consistent: Some iteration will

be considered, since we will define some constructs and their

relationships. The terms will be always the same, since we

will use the SEMAT kernel elements, so terminology will

help to keep consistency.

2.2 Executable pre-conceptual schemas

According to Zapata et al. (2006), pre-conceptual schemas

are diagrams for representing knowledge about any domain.

The main advantages of using pre-conceptual schemas are re-

lated to their proximity to both the natural language and the

formal logic. Also, the possibility of defining operations

among concepts by using the so-called executable pre-

conceptual schemas (Zapata et al., 2011) is one of the rea-

sons for selecting this graphical formalism.

The main symbols we will use from the pre-conceptual

schemas are depicted in Figure 1, and they are explained as

follows: (i) concepts are nouns and noun phrases of the do-

main; (ii) connections are one-direction links between con-

cepts and relationships and vice versa; (iii) structural relation-

ships are the verbs to be and to have; (iv) dotted connections

are used for linking concepts and notes; (v) notes are used for

including possible values of concepts.

An example of an executable pre-conceptual schema is de-

picted in figure 2. Be advised that the leaf concepts (the ones

which receive a “has” relationship and do not start another re-

lationship) have values associated to them. Another feature of

the schema is the addition of tables for including examples of

certain concepts.

3 A PRE-CONCEPTUAL-SCHEMA-BASED

GENERAL THEORY ABOUT SOFTWARE

ENGINEERING

Initially, pre-conceptual schemas are selected for representing

general theories. In Figure 3 we represent the first approach

to the general theory about software engineering, based on

the information included in the SEMAT kernel, which can be

consulted in the Preface of this book. Particularly, we are us-

ing the alphas and their relationships and the card of the alpha

opportunity. The main ideas about general theories are taken

from Sjøberg et al. (2008), and they can be summarized as

follows (see the blue elements in Figure 5):

Theories have one of some types (ANALYSIS;

EXPLANATION; PREDICTION; EXPLANATION AND

PREDICTION; DESIGN AND ACTION), propositions, ex-

planations, and scope. Propositions are relationships among

constructs. Constructs have an archetype class (ACTOR;

TECHNOLOGY; ACTIVITY; SOFTWARE SYSTEM), a

name, and a value.

Some other information (see the pink elements in Figure

5) is gathered from Ekstedt (2013):

Explanation has property and dependency.

The final information (see the green element in Figure 3)

is related to the SEMAT kernel (Jacobson et al., 2013):

The archetype class can be generalized in the shape of

the so-called concern areas (CUSTOMER, SOLUTION,

ENDEAVOR).

Once we created the formalism, we can use it with the

purpose of explaining the initial set of the SEMAT kernel el-

ements. In order to achieve this goal, we can assign values to

the concepts based on the information the SEMAT kernel has

provided. Table 1 summarizes four propositions related to the

general theory for explaining the concepts of the SEMAT

kernel. Also, Figure 4 includes the values of the fourth propo-

sition.

Figure 1. Main symbols of the pre-conceptual schemas. Adapted from Zapata et al. (2006)

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #1, pp. 3–7, ISBN 978-958-775-080-5

 5

Figure 2. An executable pre-conceptual schema (Zapata et al., 2011)

Figure 3. First pre-conceptual schema for the general theory about software engineering.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #1, pp. 3–7, ISBN 978-958-775-080-5

 6

THEORY

PROPOSITION EXPLANATION

SCOPE TYPE CONSTRUCT RELATIONSHIP CONSTRUCT

PROPERTY DEPENDENCY
NAME VALUE

ARCHE-

TYPE

CLASS

NAME NAME VALUE

ARCHE

-TYPE

CLASS

Alpha
Stakehol-

der
Customer Identifies Alpha

Oppor-

tunity
Customer

Explain-

ing the

main

concepts

of the

SEMAT

kernel

Explanation

Alpha
Stakehol-

der
Customer Supports Alpha Team Endeavor

Alpha
Opportu-

nity
Customer Has State

Identi-

fied
Customer

A good oppor-

tunity is iden-

tified address-

ing the need

for a software-

based solution

Before the state

<solution need-

ed>

Alpha
Opportu-

nity
Customer Has State

Value

establis-

hed

Customer

A good oppor-

tunity has es-

tablished val-

ue

After the state

<solution need-

ed> and before

the state <viable>

Table 1. Values of four propositions related to the general theory about software engineering.

Figure 4. Executable pre-conceptual schema for the values of the proposition “Opportunity has the state <estab-

lished value>”

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #1, pp. 3–7, ISBN 978-958-775-080-5

 7

4 DISCUSSION AND RESULTS

A general theory about the software engineering is useful for

several purposes: the explanation of several assertions about

the domain itself, the analysis of several propositions, the

prediction of expected values, the design of situations about

the domain, etc. Since we have the initial information about

the SEMAT kernel, we can provide some explanation of such

information with the help of a general theory. The selected

formalism in this case is related to the so-called executable

pre-conceptual schemas, due to the fact that they can express

the information in a standardized way and they can keep con-

trolled the usage of terminology.

As we could demonstrate by creating both the Table 1 and

the Figure 4, the concepts related to the general theory are

adequate for including the initial information of the SEMAT

kernel, explaining several propositions and the properties be-

hind them in a suitable way. Some other elements of the

SEMAT kernel can be considered in the same way, for exam-

ple activity spaces, competencies, and patterns.

5 CONCLUSIONS AND FUTURE WORK

General theories have been developed for several knowledge

fields in order to explain, analyze, design, and study the phe-

nomena related to such fields. Software engineering also have

some general theories, but they are focused on specialized is-

sues instead of general ones, and they sometimes lack the

minimum formalism needed for generating a proof theory.

For the aforementioned reasons, in this paper we proposed a

pre-conceptual-schema-based general theory about software

engineering. We used the methodology proposed by Ekstedt

(2013), and the information provided by Sjøberg et al. (2008)

and Jacobson et al. (2013) for completing and exemplifying

the intended general theory.

The results are promising, since we could establish some

propositions included in the SEMAT kernel, but we need to

enhance and prove other capabilities of the general theory for

generating additional tasks like analysis, prediction, and de-

sign. Probably, new elements will be needed, but the initial

ones also can prove to be useful for the other purposes. As

the elements of the SEMAT kernel evolves, we need to in-

volve as many elements as we need, but keeping control of

the terminology defined by our proposed general theory

about software engineering.

6 REFERENCES

Adolph, S., Kruchten, Ph., & Hall, W. 2012. Reconciling per-

spectives: a grounded theory of how people manage the

process of software development. The journal of systems
and software 85: 1269–1286.

Bartels, R. 1968. The general theory of marketing. Journal of
marketing 32(1): 29–33.

Coleman, G. & O’Connor, R. 2007. Using grounded theory
to understand software process improvement: a study of
Irish software product companies. Information and soft-
ware technology 49: 654–667.

Ekstedt, M. 2013. An empirical approach to a general theory
of software (engineering). In proceedings of the GTSE,
San Francisco, 23–26.

Frickel, S. & Gross, N. 2005. A general theory of scien-
tific/intellectual movements. American Sociological Re-
view 70(2): 204–232.

Green, A. E. & Laws, N. 1966. A general theory of rods,
Proceedings of the Royal Society of London, Series A,
Mathematical and Physical Sciences 293(1433), 1966,
145–155.

Jacobson, I., Pan-Wei, N., McMahon, P., Spence, I., & Lid-
man, S. 2013. The Essence of Software Engineering—
Applying the SEMAT Kernel. London: Addison-Wesley.

Johnson, P., Jacobson, I., Goedicke, M., & Kajko-Mattson,
M. 2013. Second SEMAT workshop on a General Theory
of Software Engineering (GTSE 2013). In proceedings of
ICSE, San Francisco, 1525–1526.

Keynes, J.M. 1937. The general theory of employment. The
quarterly journal of economics 51(2): 209–223.

Köhler, G. 1979. Toward a general theory of armaments.
Journal of Peace Research 16(2): 117–135.

Medeiros, P. & Horta, G. 2013. On the representation and
aggregation of evidence in software engineering: a theory
and belief-based perspective. Electronic notes in theoreti-
cal computer science 292: 95–118.

Mitchell, R., Agle, B., & Wood, D. 1997. Toward a theory of
stakeholder identification and salience: defining the prin-
ciple of who and what really counts. The academy of
management review 22(4): 853–886.

Rueff, J. 1947. The fallacies of Lord Keynes general theory.
The quarterly journal of economics 61(3): 343–367.

Sjøberg, D., Dybå, T., Anda, B., & Hannay, J. 2008. Building
theories in software engineering. In F. Shull et al. (eds),
Guide to advanced empirical software engineering: 312–
336. London: Springer-Verlag.

Trachtenberg, M. 1990. A general theory of software-
reliability modeling. IEEE transactions on reliability
39(1): 92–96.

Zapata, C. M. 2012. UNC-Method revisited: elements of the
new approach. Saarbrüken: Lambert Academic Publis-
hing.

Zapata, C. M., Gelbukh, A., & Arango, F. 2006. Pre-
conceptual Schema: A Conceptual-Graph-Like
Knowledge Representation for Requirements Elicitation.
Lecture Notes in Computer Science 4293: 17–27.

Zapata, C. M., Giraldo, G., & Londoño, S. Esquemas pre-
conceptuales ejecutables. Avances en Sistemas e In-
formática 8(1): 15–23.

Zerangue, K. 1993. On developing a general theory of soft-
ware engineering. In Proceedings of the 17th annual in-
ternational computer software and applications confer-
ence, Phoenix, 334–335.

This page intentionally left blank

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #2, pp. 9–18, ISBN 978-958-775-080-5

1 INTRODUCTION

Science and technology fields, such as physics and compu-

ting, have continuously sought underlying theories, rules, and

patterns that we can use to precisely predict outcomes given

certain inputs, and to explain certain phenomena of the uni-

verse. Theories help us explain how the universe works.

Good theories and models should be able not only to explain

what has been observed, but also predict phenomena that

have yet to be observed (Tichy, 2011). Similar to other ma-

ture disciplines, e.g., physics, medicine, psychology etc.,

software engineering as a discipline is on its way to become

more mature evidenced by the many theories and models that

describe our field. Some theories (models)—related to empir-

ical software—have established their broader impact. Exam-

ples of such theories (models) include Human Information

Process (HIP) model (Hedge, 2014; Miller, 2014; Miller,

1956) that explains human ability to process and respond to

the information they received through their senses; Technolo-

gy Acceptance Model (TAM) that models that how users are

come to accept and use a technology (TAM, 2014); and the

Theory of Planed Behavior (TPB) (Ajzen, 1991) that has

been used successfully to predict and explain a wide range of

health behaviors and intentions.

From new methods and technologies adoption perspec-

tive, many results and tools from software engineering re-

search often failed to move from research prototype to be

widely adopted and deployed in industry; instead, they re-

mained as research orphans. Glass et al. (2002) noted that for

those that did make to industry, it could take some 15 years

on average from initial discovery to practical usage. The aca-

demic and research community had started to address this

problem. Adoption Centric Software Engineering (ACSE;

Tilley et al., 2002; Balzer et al., 2004) was an example of

such effort. ACSE aimed to advance the adoption of software

engineering tools and techniques by bringing together re-

searchers and practitioners to investigate novel approaches

for fostering the transition from limited-use research proto-

types to broadly applicable and practical solutions.

The industry is also looking at bridging the gap between

industry and research. Jacobson et al. (2009) noted that soft-

ware engineering today is gravely hampered by immature

practices. They later started the Software Engineering Meth-

od and Theory (SEMAT, 2014) initiative with the goal to

bridge this gap (Jacobson et al., 2012). As a first step,

SEMAT working groups have established a language and a

kernel that define commonly used elements in software engi-

neering, known as Essence (OMG, 2014). Jacobson et al.

(2012b; 2013) further demonstrated how to use Essence in

software development in both traditional development con-

texts and modern agile development contexts with both small

and large teams. Although Essence is relatively new, its earli-

er version has been applied to industrial settings (Jacobson et

al., 2012b; 2013).

To effectively foster adoption of new methods and re-

search results, a mechanism is needed for providing a com-

mon basis of comparison and evaluation, and give objective

assessment of effectiveness and efficacy of the new approach.

In this Chapter we propose the use of Essence—the newly

recommended OMG standard—as such a desired foundation,

and we demonstrate how to use Essence to systematically as-

sess an existing empirical study, report its findings, and identi-

fy the validation threats to the selected case study.

This Chapter is organized as follows
1
: in Section 2 we re-

view some existing empirical software engineering research

and identify one of the emerging common challenges of em-

pirical software engineering—the need for a comparison

framework. In Section 3 we further discuss the benefit of

providing common comparison framework for empirical re-

search, and we layout the quality attributes belonging to Es-

sence as a good candidate for such a framework. In Section 4

we show how to augment Essence with properties of interest

1
 The theoretical framework related to SEMAT is com-

pletely described in the Preface of this book.

Chapter #2

Essence as a Framework for Conducting Empirical Studies

S. Huang
Florida Atlantic University

P.-W. Ng
Ivar Jacobson International

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #2, pp. 9–18, ISBN 978-958-775-080-5

 10

that make it suitable to serve a good evaluation framework.

In Section 5 we describe in detail how to use Essence to pro-

vide analytical guideline for conducting case studies. In Sec-

tion 6 we illustrate an example of using Essence as an evalua-

tion framework for conducting case studies. Finally, in

Section 7 we conclude this research and we point out future

work.

2 EMPIRICAL SOFTWARE ENGINEERING

RESEARCH AND THE NEED FOR A COMMON

COMPARISON FRAMEWORK

Empirical software research has been growing recognition

(Dybå et al., 2005; Budgen et al., 2002; Tichy, 2011) due to

its critical roles in assessing and comparing different software

development methods and provides evidence-based software

engineering (Kitchenham, 2004). As we can see from the ex-

isting research below, our community is in dire need of a

common comparison framework that can be used to assess

and evaluate different software engineering methods, which is

exactly what Essence provides.

Dybå and Dingsøyr (2008) surveyed research for empiri-

cal evidence of agile software development and found that

different reporting content hinders analysis. They researched

36 empirical studies out 1996 studies related to agile devel-

opment. They grouped their studies into four themes: intro-

duction and adoption, human and social factors, perceptions

on agile methods, and comparative studies. Their goal is to

investigate what is currently known about the benefits and

limitations of, and the strength of evidence for, agile methods.

Their findings pointed out that the main implication for re-

search is a need for more and better empirical studies of agile

software development within a common research agenda.

Jedlitschka et al. (2008) also pointed out that a major

problem for integrating software engineering research results

into a common body of knowledge is the diversity of report-

ing styles. It is difficult to locate relevant information; and

important information is often missing. They suggested a

schema for describing (dependent, independent, or moderat-

ing) variables.

Petersen and Wohlin (2009) found that studies investigat-

ing a similar object do not agree on which context facets are

important to mention and provided a checklist that aims to

help researchers make informed decisions on what to include

and not to include. In their survey, they used context facets

such as market, organization, product, processes, practices

(including tools and techniques), and people. They also noted

that there is still work needed to reach a consensus within the

software engineering research community.

Feldt and Magazinius (2010) reviewed the papers in

ESEM 2009 to compare the numbers of validity threats ver-

sus mitigation strategies and found that an alarming number

of these do not address validity threats and a large number

mitigate the threats as future work. They also pointed out

that these papers “had no unified framework with which to

classify the threats or strategies, so our analysis at this stage

is only indicative.”

Murphy-Hill and Williams (2012) also discussed the capa-

bility to generalize the research findings. The question is

whether it is valid to extrapolate the environment in which the

software engineering research took place to somewhere clos-

er to the reader environment. They identified several similari-

ty types: people similarity, tool similarity, activity similarity,

artifact similarity, and temporal similarity. They highlighted

that the behavior between software engineers and knowledge

workers in other domains are similar. Such similarities would

expand the scope of validity of research findings. Neverthe-

less, they recognized that the study of generality is still at its

infancy in software engineering research.

Runeson and Höst (2009) present a nice collection of case

study methodology and provide guidelines for researchers

conducting case studies and readers studying reports of such

studies. The reports are the main source of information for

judging the quality of the study. Guidelines (e.g., in detailed

tabular format and checklist) of reporting case study findings

have been proposed by Jedlitschka and Pfahl (2005) and

evaluated by Kitchenham et al. (2008) with the goal to define

a standardized reporting of experiments that enables cross-

study comparisons through systematic review. As Runeson

and Höst (2009) pointed out, the high-level structures are

mostly based on qualitative data, and the low-level detail is

less standardized and more depending on the individual case.

In an interview with Sjøberg conducted by Tichy (2011),

when asked about whether UML (Unified Modeling Lan-

guage) is helpful (in software development), Sjøberg indicat-

ed that “the lack of a framework for formulating specific re-

search questions leads to a lack of sharing of independent,

dependent, and context variables among studies, as well as

questionable quality of many of the studies.” Sjøberg reaf-

firmed our belief about the need for a common comparison

framework.

From the brief survey above, it is clear that reporting em-

pirical study findings lacks a systematic framework. The ob-

jective of this Chapter is to show that Essence can be a foun-

dation for such a framework.

3 CHARACTERISTICS OF ESSENCE AS AN

EMPIRICAL RESEARCH FRAMEWORK

Surely, too much effort is still needed in order to bring re-

search and industry together. Huang and Tilley (2004) noted

that fostering adoption of research findings required more

empirical studies and reported the challenges in doing so. Our

brief review showed that there is indeed a growing interest in

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #2, pp. 9–18, ISBN 978-958-775-080-5

 11

empirical software engineering research. However, we also

found that a systematic framework for reporting case studies

and findings is lacking. As a consequence, it is difficult to

search for relevant case studies, compare findings, and gener-

alize results.

Before proceeding further, we would like to clarify what a

framework means in the context of this Chapter. We recog-

nize that there have been generally accepted approaches on

conducting research and reporting case studies, such as those

by Shaw (2002) and Runeson and Höst (2009). These focus

more on research methods. On the other hand we want to fo-

cus on research data, which we call properties of interest. Ex-

amples of properties of interest include team size, team distri-

bution, system complexity, and stakeholder diversity.

The framework we are looking for should provide guide-

lines as to what properties should be collected and reported

as well as how to organize them for easy understanding. Spe-

cifically, properties of interest should have a good coverage

of software engineering endeavors, be organized hierarchical-

ly, and at each level of the hierarchy be orthogonal or non-

overlapping as far as possible. In addition, this framework

should also provide analytical guidelines to evaluate proper-

ties for their realism and the generality of the findings.

3.1 Essence as a foundation for an empirical

research framework

We acknowledge that Essence is still at its infancy. Further-

more, we also recognize that the primary audience of Essence

is practitioners, as opposed to researchers. Thus, additional

work is needed to make Essence also useful and usable for

researchers. Specifically, Essence explicitly does not identify

or define a common set of observable, controllable properties

of interest which researchers can select and use in empirical

research.

Nevertheless, we still believe that Essence is an attractive

candidate as a foundation for an empirical research frame-

work because of several reasons:

a) Comprehensiveness—Essence identifies the dimensions of

challenges a typical software development endeavor fac-

es. These dimensions are intuitively orthogonal and pro-

vide a good basis for spanning and organizing properties

of interest.

b) Model based—Essence expresses the relationships be-

tween these different dimensions, and hence provides a

foundation to model the relationships between various

properties of interest.

c) Extensible—Essence has extension mechanisms to cover

more challenges by adding practices as needed. This

overcomes the trap of having too much unnecessary in-

formation too early. It gives researchers and practitioners

the ability to zoom in to the details as appropriate. This

additional information, i.e. properties of interest, is added

by what Essence calls practices.

d) Configurable—Essence provides several mechanisms to

describe the diverse range of software engineering ap-

proaches. As an example, Figure 1 describes the differ-

ences between modern software development and tradi-

tional and more conservative development, which has

different risk emphasis.

Figure 1. Difference between Traditional and Modern Development Approaches (Ng & Huang, 2013)

e) Tangible – Each alpha states and their checklist are pre-

sented as a deck of cards (business card size) as shown in

the Preface of this book. We usually get project teams to

discuss what they need to do by laying out the cards on

the table and moving them around. The state definitions

can be used to design task boards and Kanbans (Kniberg,

2010) that are common in agile methods and tooling to-

day.

The above characteristics of Essence make it a good can-

didate as a foundation for a systematic framework to report

case studies. We achieved this goal after augmenting Essence

with different kinds of properties for describing case study re-

search and analytical guidelines for evaluating research data

and findings.

3.2 Evaluating the Framework

To evaluate our framework, we took an existing case study

and compared it with how we would have described and ana-

lyzed results, albeit using this framework. The existing case

study we chose was conducted by Koskela and Abrahamsson

(2004). This case study investigated if the role of a customer

representative was too demanding in an extreme program-

ming (XP) environment. We took this case study and evaluat-

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #2, pp. 9–18, ISBN 978-958-775-080-5

 12

ed how its properties of interest could be better organized.

We analyzed if it had included relevant properties of interest.

To our surprise, by using our framework, we detected a

strong threat to the validity of this case study. Understanda-

bly, this validity threat could not be detected by any watchful

eye without using any specific framework. Nevertheless, the

fact that such a validity threat had not been pointed out by the

original paper or subsequent secondary studies only serve to

highlight the importance of having systematic reporting and

concrete evaluation guidelines. This is what a framework is

supposed to do.

More importantly, through this case study we show that

the value Essence can bring to software engineering research,

which we believe is a small but important step towards build-

ing a body of knowledge surrounding Essence and SEMAT.

Ultimately, we would like to encourage the software engi-

neering research community to use Essence in their research.

The experience and feedback gained from the research com-

munity will not only serve to validate Essence empirically, but

also provides inputs to its further improvement.

4 AUGMENTING ESSENCE WITH

PROPERTIES OF INTEREST

As mentioned before, the primary audience of Essence is

practitioners. The alphas represent different dimensions of

risk and challenges, and achieving progress is about moving

from one state to the next along each alpha.

The Essence specification (OMG, 2014) does not, at the

time of writing of this Chapter, explicitly identify a common

list of properties for describing alphas. While properties such

as size and complexity of a Software System, size and distri-

bution of a Team, community size and diversity of a Stake-

holder are mentioned in the Essence specification, there is no

explicit attempt to identify a common set. However, such

properties are important for software engineering research

because they can be either independent or dependent variables

in software engineering research.

However, Essence does provide extensibility mechanisms

to overlay properties on top of the kernel. How to use these

mechanisms to introduce properties is out of the scope of this

Chapter.

Instead, we want to identify the kinds of properties that

are of interest to readers of the software engineering research

results. Structural properties are those about structures and

relationships in a software engineering endeavor. Flow prop-

erties are those about information and process flows in a

software engineering endeavor. We will give some examples

but leave the outlining a comprehensive list as future work.

4.1 Structural Properties

Structural properties are those that describe and characterize

the structure and complexity of entities. They are useful for

characterizing software engineering research contexts. A

good number of commonly used structural properties can be

expressed as a function of alpha instances and their relation-

ships, or pegged to them. For example, size of the team is the

number of people in a team instance.

Briand et al. (1996) provide a general mathematical

framework for several important measurement concepts (size,

length, complexity, cohesion, and coupling) for Software Sys-

tem artifacts, which we believe can be extended to other al-

pha types by using Essence.

Characterizations of relationships are also important. For

example, Bird et al. (2009; 2011) by making empirical find-

ings showed that developer-module relationships have strong

influence on quality predictions. Minor contributors of soft-

ware modules have a higher likelihood to introduce defects.

Such relationships can be expressed in Essence language as

relationships between Team (member) instances and Software

System (component) instances, where the objects in the pa-

renthesis are introduced by Team and Software System prac-

tices, respectively. These relationships can be expressed suc-

cinctly through some team organization patterns. Similarly,

the relationships between Stakeholder instances and Re-

quirements, as well as stakeholder expectations and compe-

tencies have strong impact on the success of a software de-

velopment.

Alphas provide a way to organize properties of interest in

a model. Figure 2 shows a partial model comprising Team

and Software System, augmented with some structural prop-

erties.

Figure 2. Augmenting Alphas with Structural

Properties

4.2 Flow Properties

Flow properties are those that measure progress flows. For

example, different instances of the Requirements alpha can

flow through the Requirement alpha states at different places.

Some instances move slower, while others move faster de-

pending on how complex they are and how quickly the team

works. We can augment properties such as the time spent on

a particular alpha state, the waiting time, and value added ef-

fort versus non-value added effort to each state (see Figure

3).

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #2, pp. 9–18, ISBN 978-958-775-080-5

 13

Figure 3. Augmenting flow Measures to Alpha States

Such properties are used when looking for productivity

gains and are heavily used in lean process improvements (Mu-

jtaba et al., 2010; Petersen & Wohlin, 2010). We want to

point out that the productivity properties have to be anchored

to the items being worked on. In the case of Figure 3, they

are about Requirements, as opposed to architecture work,

which should be pegged to the Software System alpha.

5 PROVIDING ANALYTICAL GUIDELINES

As highlighted earlier, the software engineering research

community lacks a common framework to report studies (Pe-

tersen & Wohlin, 2010; Jedlitschka et al., 2008; Dybå and

Dingsøyr, 2008; Feldt & Magazinius, 2010; Murphy-Hill &

Williams, 2012). Essence provides a way to address this

problem by organizing properties of interest in a model of al-

phas and their relationships as defined by Essence. Now we

take a step further to provide guidelines for analyzing case

studies. In particular, we identify the need for two kinds of

measures:

 Comprehensiveness measures are about whether the study

has adequate and relevant information to help the reader

understand it.

 Distance measures allow for comparisons as to how far a

study is to reality or to a reader situation.

These measures help the researcher evaluate if there is

sufficient data being reported in the study, and to consider the

realism and generality of his study.

To be more precise in what we mean by comprehensive-

ness and distance, we will first use a simple mathematical set-

theoretic formulation. We will then use this formulation in the

next Section when we demonstrate an example of using Es-

sence to conduct research.

5.1 Comprehensiveness Measures

A study describes a software engineering endeavor or a set of

endeavors whose setup and execution are observed. We first

define the description PE of a software engineering endeavor

E as a list of properties:

Each is a property description in the form of:

alpha-property:value

For example, consider the development endeavor EWeb of

a simple web-based system performed by three students

working together. Its description is a list of properties:

 {Team-size: 3, Team-experience: student,

Team-distribution: co-located,

 Software System-technology: web }

This is a very brief description and far from complete.

Moreover, the property Team-experience is vague as it does

not indicate what the experience is about, i.e., about the Re-

quirements, Software System, or Way of Working. It only in-

dicates that the experience is “students”. Thus, is not

comprehensive. Although it has some information about

Team and Software System, it does not have information

about other Essence alphas, such as Opportunity, Stakehold-

ers, Requirements, Work, and Way of Working. Thus, when

talking about comprehensiveness, it is important to also talk

about the dimensions of comprehensiveness. These dimen-

sions should be as orthogonal as possible because we do not

want to have duplicate information. Incidentally, the Essence

alphas are chosen to be as orthogonal as possible, albeit only

intuitively.

We can identify a comprehensiveness of a property de-

scription P as where the dimension can be a

particular alpha, or all the alphas in the Essence. Thus,

 is zero since there is no information

about stakeholders in , i.e., is an empty set.

 is the comprehensiveness of the description

over all the different dimensions spanned by the alphas

and relationships defined in the Essence kernel. We will use

 as a short form for

In this case, we have four pieces of information (i.e., four

descriptions of four properties), which is inadequate to give a

thorough description and we say that the comprehensiveness

of is weak. However, there is more information in the

Team dimension, and we can say that the comprehensiveness

about the team dimension is strong. Thus, we encounter the

problem of scales, i.e., what weak is, what strong is, how

many property description constitute weak or strong. Note

that comprehensiveness is a function of the proper number of

properties in the list. The more items in a description list, the

stronger the confidence, provided that the properties are or-

thogonal. A detailed discussion of the scales for a compre-

hensiveness measure is a complex one and we will consider

the discussion to be outside the scope of this Chapter. For the

purpose of this Chapter, we will use terms like weak and

strong intuitively. However, by now we have already

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #2, pp. 9–18, ISBN 978-958-775-080-5

 14

achieved an important step, which is to distinguish different

dimensions of comprehensiveness according to alphas.

5.2 Distance Measures

The reader of a case study is interested whether the case

study applies to his/her situation, or whether a practice is

suitable for a particular software endeavor. The measure of

applicability and suitability can be identified to be a distance

measure.

Before proceeding further, we want to introduce a short-

hand E to represent the complete description of a software

engineering endeavor. Strictly speaking, an endeavor and its

description are never the same things, and we can never de-

scribe an endeavor completely. We can compare the charac-

teristics of two software engineering endeavors E1 and E2 by

using some distance measure as , which is the actu-

al distance as opposed to the measured distance ,

because we can measure only what we are given.

Similarly, as in the previous subsection, we can quantify

the dimension of the distance. For example,

 is the distance (how different) between

two engineering endeavor E1 and E2 over the Stakeholders

dimension.

The same notation can also be used for describing a prac-

tice. For example, a practice A is suitable for co-located

teams building a small web application.

 {Team-size: small, Team-distribution: co-located,

 Software System-technology: web}

It is now possible to describe the applicability this practice

A for a software engineering endeavor, such as the web de-

velopment endeavor EWeb by using the distance measure:

If we can describe both completely, then the distance be-

comes .

When considering distances, one need also consider

scales. Note that since distance is a function of the differences

in each property description, scales have to be individually

defined for each property. For example, Runeson (2003)

found that there are small differences between graduate stu-

dents and industry people on one hand, while there are signif-

icant differences between graduate students and freshmen on

the other hand. We will consider the discussion of scales to be

outside the scope of this Chapter. In this Chapter, we will use

intuitive terms like weak or strong for comprehensiveness and

near or far for distance.

6 AN EXAMPLE OF USING ESSENCE TO

CONDUCT RESEARCH

In Section 2, we have pointed out that a systematic frame-

work for comparing and reporting research findings is lacking

and we advocated Essence as a foundation, albeit after aug-

menting with property descriptions and analytical guidelines.

In this Section, we demonstrate how to use this augment-

ed Essence as a framework for conducting research. As an

example, we compare how an existing software engineering

research reported its findings versus how our framework

would report the same findings. Our candidate software engi-

neering research case study is conducted by Koskela and

Abrahamsson (2004). This case study was not arbitrarily cho-

sen. Dybå and Dingsøyr (2008) searched for empirical studies

up to 2005, inclusive. They identified 1996 studies from the

literature, of which 33 were found to be research studies of

acceptable rigor, credibility, relevance, and were primary

studies. Koskela and Abrahamsson (2004) was one of these

33 studies. Using the guidelines from Runeson and Höst
(2009), we organize our analysis in the following sub-

sections:

A. Formulating the Research

B. Describing the Research Context

C. Describing the Research Execution

D. Analyzing and Concluding the Research

In each subsection, we have different paragraphs repre-

senting the original research paper and our suggested ap-

proach, respectively:

 Study Description—this contains text that largely comes

from the original study itself. Our changes are primarily

editorial.

 Essence Description—we use the model-based approach

discussed in the Preface of this book to describe the case

study.

 Essence Analysis—we use the guidelines in Section 5 to

analyze the comprehensiveness of the case study and its

validity and highlight possible issues concerning the

study.

6.1 Formulating the Research

Study Description—the goal of the study was to assess

whether the role of the customer representative is too de-

manding in an extreme programming (XP) environment. This

study was conducted in a university setting with students and

staff.

Essence Analysis—There are several entities to consider

for such a study, namely:

 The practice P, which is extreme programming here.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #2, pp. 9–18, ISBN 978-958-775-080-5

 15

 The experimental environment, which is the software

engineering endeavor E, conducted in a university

setting.

 The real world environment R, which readers of the study

are interested in.

 The hypothesis H, which is whether XP places too much

demand on the customer representative.

To have realistic and conclusive results from the study,

both the distance and the distance should be

near. The first distance ensures that the experiment applies

XP faithfully, and the second distance ensures that results are

useful for the real world.

In addition, this study hypothesis is about customer repre-

sentatives and teamwork. Thus, we should place emphasis on

the comprehensiveness over both Stakeholders and Team di-

mensions, i.e., CStakeholders and CTeam.

Essence Description—to formulate this study, we would

summarize the above analysis, and highlight the strategies to

keep the distance measures near.

6.2 Describing Research Context

Study Description—the research setting was a team of 4

developers (5
th
 or 6

th
 year students) who had one to four

years of experience. The team members were well versed in

Java programming language and object-oriented analysis and

design approaches. They were beginners to XP with just a

two-day training. They used Eclipse/JUnit/CVS. The applica-

tion was written in Java and JSP (JavaServer Pages) and it

used a MySQL relational database to store link data, in addi-

tion to an Apache Tomcat 4 Servlet/JSP container. The team

worked in a co-located development environment. The cus-

tomer, i.e., the first author of the case study, shared the same

office space with the development team. The office space and

workstations were organized according to the suggestions

made in XP literature (Jeffries et al., 2001; Beck & Andres,

2004) to support efficient teamwork. Qualitative data includ-

ed development diaries maintained by the developers, a cus-

tomer diary, post-mortem analysis session recordings and de-

veloper interviews. The developers and the customer were

updating their diaries continuously during the project, track-

ing time and filling in observations.

Essence Description—the study’s context can be mod-

eled concisely using Essence through structural measures as-

sociated with alphas as depicted in Figure 5. It is a visual rep-

resentation of properties of a software engineering endeavor.

Such a visual approach facilitates discussions and helps iden-

tify issues in the experimental context and description. At the

very least, it gives a visual feel regarding which dimensions

are more comprehensively described over those that are

weakly described.

Figure 4. Using Essence structural properties to describe

study context

Essence Analysis—from the study description and the

visual representation in Figure 4, it is clear that comprehen-

sive information is available for both Team and Way of

Working dimensions, i.e., both and

 are strong.

It is also clear from Figure 4 that the experiment design

has little detail on the Opportunity and Requirements, i.e.,

both and are weak.

More importantly, the Stakeholders environment, involv-

ing only one person, is simplistic. As a software engineering

coach, the first author of this paper often encounters envi-

ronment where the customer representative has to interface

with many other stakeholders. This study did not mention the

additional work the customer representative was responsible

for. In short, is moderate and

 is far.

6.3 Describing Research Execution

Study Description—system development was carried out

in six iterations, of which the first three took two weeks of

calendar time each, next two took one week each, while the

sixth iteration was a two-day correction release. The collect-

ed data for each iteration included total work effort, number

of user stories implemented, and tasks defined. They also

tracked the time duration when the customer representative

was present.

Essence Description—the properties being observed can

be modeled visually and concisely using Essence as depicted

in Figure 5.

Essence Analysis—since the goal of this study was about

the workload on the customer representative, it is important

to explore factors affecting the workload. Essence expresses

a relationship from Stakeholders to Requirements, so it is

natural to ask about the requirements churn and complexity,

which would have an impact on the customer representative

workload. The study does not provide such details. This sug-

gests that is weak. Since requirements

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #2, pp. 9–18, ISBN 978-958-775-080-5

 16

change is a typical challenge in the real world environment,

we might add that is far.

Figure 5. Using Essence to describe flow properties of ob-

served behaviors

6.4 Describing Research Execution

Study Description—Koskela and Abrahamsson (2004)

noted that many authors claim that on-site customer involve-

ment is often difficult to realize or even unrealistic due to the

required customer work effort. A contrasting result offered

by this study was that while the customer was present with

the team at an average of 83% of his work effort, only 21%

was required for assisting the development team in the actual

development work.

This study also reported that the developed solution had

not been used since as actively as intended. The reason for

this can be attributed to the relatively poor usability of the

system. Yet, all the related stakeholders were happy with the

solution when it was under development. The on-site custom-

er also had a lot to say on how the system should function.

Consequently, while the experiences were mostly positive, the

data also revealed that the on-site customer practice was in

danger of creating a false sense of confidence towards the

system under development. The study suggested that the cus-

tomer needed for example to invest in user-centered design

(UCD) to address this issue.

Essence Analysis—From our analysis, it is difficult to

support the claims made in this study because:

 In the experimental setup, the stakeholder environment is

simplistic, i.e., is far.

 In the experimental execution, there is little information on

the complexity of the requirements and requirements

churn, which may have impact on the customer’s

involvement, i.e., might be far. In

the real world, the customer representatives would also

be spending much time, e.g., collecting user inputs and

mediating requirements between different stakeholders.

Apparently, this was not something that happened in the

study. In short, is also far.

Thus, our conclusion is that the original case study had a

strong threat to validity.

Essence Description—based on the above analysis, we

have two choices to report the study findings. The first is to

report the same observed data, but to recognize the threat to

validity. For example, in addition to stating that the customer

representative spent 21% of his time, it could be added that

the figure would be higher after factoring the additional time

that would have been needed for learning usability design,

and collecting user opinions that is potentially different.

The second choice is to investigate what would be more

realistic stakeholder conditions and, if feasible, include that in

the experiment design. This would mean repeating the entire

study itself. However, this would be more realistic.

Conclusion—in this particular example, we found that we

would have a conclusion different from that of the original

case study. Now, we did not begin with the intention to refute

any existing studies. The detection of this deficiency is only

coincidental. Nevertheless, this coincidence is an indication of

the importance of having a systematic framework, and in par-

ticular the value of Essence as a foundation for such a frame-

work.

7 CONCLUSIONS AND FUTURE WORK

The goal of SEMAT is to bridge the gap between software

engineering research and industry. As we analyze existing

software engineering research literature to ascertain the value

which Essence can bring to software engineering research, we

find that there is growing recognition in empirical research.

Unfortunately, we also begin to realize that there has no

widely accepted framework for reporting empirical results,

nor a systematic way to evaluate these results. Consequently,

it is difficult to compare the findings from different studies;

and it is also difficult to aggregate the results.

In this Chapter, we demonstrated the use of Essence as a

foundation for such systematic framework. This framework

provides a simple means to model and visualize the properties

of interest that are captured in a case study. The framework

also has a set of measures for evaluating case studies. Com-

prehensiveness measures help evaluate a case study that in-

cludes relevant information and identifies the missing infor-

mation. Distance measures help evaluate the realism of the

case study and the applicability of a practice to different con-

texts.

We took an existing case study and used Essence to de-

scribe it. Essence was not only able to provide a model-based

and visual representation, but also in this particular case, was

also able to identify a strong threat to validity. It is important

to note that being able to detect such validity threats could be

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #2, pp. 9–18, ISBN 978-958-775-080-5

 17

achieved with a watchful eye without a framework. However,

the role of software engineering research is to provide practi-

tioners with mechanisms to detect risks and address them as

early as possible in their development lifecycle, rather than

leaving to chance. In this particular case, a tool to systemati-

cally detect the presence of validity threats was missing in the

original case study. In this paper, we have shown that how

our proposed framework could be such a tool to detect

threats early.

Our experience with the case study highlights the im-

portance of having a systematic framework to conduct and

report empirical software engineering research. It serves as

evidence to highlight the value of Essence to software engi-

neering research. This experience had been very encouraging

to us. Nevertheless, we recognize that this is still preliminary

research and much work lies ahead. We only evaluated our

framework and approach against a single case study. We did

not discuss how Essence would be useful for systematic re-

views, i.e., when attempting to summarize multiple and di-

verse studies.

For future work, our first and foremost task is to use Es-

sence to describe case studies beyond the one we investigat-

ed. This approach will yield several benefits. First, it builds

experience and provides feedback for improvement. Second-

ly, it may help to identify a set of common properties of inter-

est in software engineering endeavors for case study report-

ing.

It is also important to research further on comprehensive-

ness measures and distance measures. The results would in-

crease our understanding of the relationships among proper-

ties and make the proposed framework stronger. More

importantly, the results would make comparisons between

studies and practices more accurate.

Note:

This Chapter is an extension to the paper “On the Value

of Essence to Software Engineering Research: A Preliminary

Study” published in Proceedings of 2nd SEMAT Workshop

on a General Theory of Software Engineering (GTSE 2013),

co-located with ICSE 2013. May 26, 2013, San Francisco,

CA, USA. pp. 51–58.

8 REFERENCES

Ajzen, I. 1991. The theory of planned behavior. Organiza-
tional Behavior and Human Decision Processes 50: 179-
211.

Balzer, B., Litoiu, M., Müller, H., Smith, D., Storey, M., Til-
ley, S., & Wong, K. 2004. 4

th
 International Workshop on

Adoption-Centric Software Engineering. In Proceedings
of 26

th
 International Conference Software Engineering

(ICSE 2004), 748–749.

Beck, K. & Andres, C. 2004. Extreme Programming Ex-
plained: Embrace Change, Addison Wesley Professional.

Bird, Ch., Nagappan, N., Gall, H., Murphy, B., & Devanbu,
P. 2009. Putting it all together: Using socio-technical
networks to predict failures. In Proceedings of the 20th
International Symposium on Software Reliability Engi-
neering, 2009 (ISSRE'09), 109-119.

Bird, Ch., Nagappan, N., Murphy, B., Gall, H., & Devanbu,
P. 2011. Don’t touch my code!: examining the effects of
ownership on software quality. In Proceedings of the 19th
Symposium on the Foundations of Software Engineering
and the 13rd European Software Engineering Confer-
ence, 4-14.

Briand, L., Emam, K., & Morasca, S. 1996. On the applica-
tion of measurement theory in software engineering. Em-
pirical Software Engineering 1(1): 61-88.

Briand, L. Morasca, S., & Basili, V. 1996. Property-based
software engineering measurement. IEEE Transactions on
Software Engineering 22(1): 68-86.

Budgen, D., Hoffnagle, G., Müller, M., Robert, F., Sellami,
A., & Tilley, S. 2002. Empirical software engineering: a
roadmap report from a workshop held at STEP 2002,
Montreal, October 2002. In Proceedings of the 10th In-
ternational Workshop on Software Technology and Engi-
neering Practice, 2002. STEP 2002, 180-184.

Dybå, T. & Dingsøyr, T. 2008. Empirical studies of agile
software development: A systematic review. Information
and software technology 50(9): 833-859.

Dybå, T., Kitchenham, B., & Jørgensen, M. 2005. Evidence-
based software engineering for practitioners. IEEE Soft-
ware 22(1): 58-65.

Feldt, R. & Magazinius, A. 2010. Validity threats in empirical
software engineering research—An initial survey. In Pro-
ceedings of the 22nd International Conference on Soft-
ware Engineering and Knowledge Engineering, SEKE.

Glass, R., Vessey, I., & Ramesh, V. 2002. Research in Soft-
ware Engineering: an analysis of the literature. Infor-
mation and Software technology 44(8): 491-506.

Hedge, A. 2013. Human Information Processing, Available:
http://ergo.human.cornell.edu/studentdownloads/dea3250
pdfs/hip.pdf

Huang, S. & Tilley, S. 2004. On the Challenges in Fostering
Adoption via Empirical Studies. In Proceedings of the 4th
IEEE International Workshop on Adoption-Centric Soft-
ware Engineering (ACSE 2004: May 25, 2004, Edin-
burgh, Scotland, UK)..

Jacobson, I., Huang, S., Kajko-Mattsson, M., McMahon, P.,
& Seymour, E. 2012. Semat—Three Year Vision. Pro-
gramming and computer software 38(1): 1-12.

Jacobson, I., Meyer, B., & Soley, R. 2009. The SEMAT Ini-
tiative: A Call for Action. Dr Dobb's Journal, December
09.

Jacobson, I., Ng, P.-W., McMahon, P., Spence, I. & Lidman,
S. 2012b. The Essence of Software Engineering: the
SEMAT kernel. Communications of the ACM (10): 42-
49.

Jacobson, I., Ng, P.-W., McMahon, P., Spence, I., & Lid-
man, S. 2013. The Essence of Software Engineering: Ap-
plying the SEMAT Kernel. Addison-Wesley.

http://academic.research.microsoft.com/Author/1818317/lionel-c-briand
http://academic.research.microsoft.com/Author/549047/sandro-morasca
http://academic.research.microsoft.com/Author/994018/victor-basili

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #2, pp. 9–18, ISBN 978-958-775-080-5

 18

Jedlitschka, A., Ciolkowski, M., & Pfahl, D. 2008. Reporting
experiments in software engineering. Guide to advanced
empirical software engineering: 201-228.

Jeffries, R., Anderson, A., & Hendrickson, Ch. 2001. Ex-
treme Programming Installed, Addison-Wesley.

Kitchenham, B., Al-Khilidar, H., Ali Babar, M., Berry, M.,
Cox, K., Keung, J., Kurniawati, F., Staples, M., Zhang,
H., & Zhu, L. 2008. Evaluating guidelines for reporting
empirical software engineering studies. Empirical Soft-
ware Engineering 13(1): 97–121.

Kitchenham, B., Dybå, T., & Jorgensen, M. 2004. Evidence-
based software engineering” In Proceedings of the 26th
International Conference on Software Engineering (ICSE
2004), 273–281.

Kniberg, H. 2010. Kanban and Scrum-making the most of
both. Lulu.com.

Koskela, J. & Abrahamsson, P. 2004. On-site customer in an
XP project: empirical results from a case study. Lecture
Notes in Computer Science 3281: 1–11.

Miller, G. 1956. The magical number seven, plus or minus
two: Some limits on our capacity for processing infor-
mation. Psychological Review 63: 81-97.

Miller, G. 2014. Information Processing Theory. Available
http://www.instructionaldesign.org/theories/information-
processing.html

Mujtaba, S., Feldt, R., & Petersen, K. 2010. Waste and lead
time reduction in a software product customization pro-
cess with value stream maps. In Proceedings of the 21st
Australian Software Engineering Conference (ASWEC),
139-148.

Murphy-Hill, E. & Williams, L. 2012. How can research
about software developers generalize? In Proceedings of
the 5th International Workshop on Cooperative and Hu-
man Aspects of Software Engineering (CHASE), 105-
109.

Ng, P.-W. & Shihong Huang. 2013. Essence: A Framework
to Help Bridge the Gap between Software Engineering
Education and Industry Needs. In Proceedings of the
IEEE 26

th
 Conference on Software Engineering Educa-

tion and Training (CSEE&T), Co-located with ICSE
2013, 304–308.

Ng, P.-W., Huang, S., & Wu, Y. 2013. On the Value of Es-
sence to Software Engineering Research: A Preliminary
Study. In Proceedings of 2nd SEMAT Workshop on a
General Theory of Software Engineering (GTSE 2013),
co-located with ICSE 2013, 51–58.

OMG. 2014. Essence Submission. Available
http://www.omg.org/spec/Essence/

Petersen, K. & Wohlin, C. 2009. Context in industrial soft-
ware engineering research. In Proceedings of the 2009
3rd International Symposium on Empirical Software En-
gineering and Measurement, 401-404.

Petersen, K. & Wohlin, C. 2010. Software process improve-
ment through the Lean Measurement (SPI-LEAM) meth-
od. Journal of Systems and Software 83(7): 1275-1287.

Runeson, P. 2003. Using students as experiment subjects–an
analysis on graduate and freshmen student data. In Pro-
ceedings of the 7th International Conference on Empiri-
cal Assessment in Software Engineering, Keele Universi-
ty, UK, 95-102..

Runeson, P. & Höst, M. 2009. Guidelines for conducting and
reporting case study research in software engineering.
Empirical Software Engineering 14(2): 131-164.

SEMAT. 2014. Software Engineering Method and Theory.
Available: http://www.semat.org

Shaw, M. 2002. What makes good research in software engi-
neering? International Journal on Software Tools for
Technology Transfer (STTT) 4(1): 1-7.

TAM. 2014. Technology Acceptance Model. Available
http://en.wikipedia.org/wiki/Technology_acceptance_mod
el

Tichy, W. 2011. Empirical Software Research: An Interview
with Dag Sjøberg, Univeristy of Olso, Norway. Ubiquity.

Tilley, S., Müller, H., O’Brien, L., & Wong, K. 2002. Report
from the Second International Workshop on Adoption-
Centric Software Engineering (ACSE 2002). In Proceed-
ings of the10

th
 International Workshop Software Tech-

nology and Engineering Practice (STEP 2002), 74-78.

Part II: Method and practice representation

Simplicity is prerequisite for reliability.

— Edsger W. Dijkstra (How do we tell truths that might hurt?, EWD498, 1975)

This page intentionally left blank

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #3, pp. 21–26, ISBN 978-958-775-080-5

1 INTRODUCTION

Software engineering has been evolving towards the stand-

ardization of processes and generating a common core of el-

ements. Such a core could provide analysts and stakeholders

with the tools— e.g., methods, practices, etc.—for improving

several aspects of the software development process. Stand-

ardized processes are useful for recognizing and establishing

conditions that guarantee the relevance, quality, safety, effi-

ciency, performance, and maintenance of a software applica-

tion, regardless the software platform or the environment

used (Johnson et al., 2012).

The SEMAT kernel supports the modern practice repre-

sentation of methods like Scrum, XP, RUP, and CDM (Ja-

cobson et al., 2013). A set of elements is defined in order to

collect information from the software engineering process and

control the activities performed during the software develop-

ment process—e.g. stakeholder management, requirements

elicitation, and software system development, among others.

Several methods focused on goal-oriented requirements

specifications like KAOS (Knowledge Acquisition autOmated

Specification; Dardenne et al., 1993), I* (Yu, 1995),

TROPOS, and GBRAM are suitable to be represented by us-

ing the SEMAT kernel. Particularly, GBRAM offers special

features to be modeled in the SEMAT kernel. GRAM exhibits

a more detailed level than other similar approaches (Tabata-

baie et al., 2010) and provides a set of practical guidance and

heuristics which are useful for identifying and analyzing or-

ganizational goals. Also, GBRAM provides a top-down pro-

cessing for refining goals. Thus, goals are defined in two

phases: goal analysis and goal refinement. In goal analysis,

the analyst explores several information sources as a way to

identify possible goals and classify them according to goal

dependencies. In goal refinement, the goal set is pruned if

necessary; goals are analyzed for identifying obstacles. Final-

ly, goals are translated into operational requirements (Antón,

1997).

GBRAM is a goal-based approach for identifying, elabo-

rating, refining and organizing goals for requirements specifi-

cation (Antón, 1997). Even though GBRAM includes good

practices, integration to other methodologies is limited. Some

frameworks have been proposed for representing GBRAM.

Fabian et al. (2010) present a conceptual framework for rep-

resenting GBRAM, but they only use concepts and notions

related to the security requirements engineering. Therefore,

relevant concepts belonging to GBRAM are avoided by such

a framework. Another work attempting to describe GBRAM

is developed by Kavakli (2002). In this framework, GBRAM

is described as a collection of method fragments. Then, each

fragment prescribes a way of progressing from an initial

knowledge modeling state to a target knowledge modeling

state. Given that this study is restricted to modeling the

GBRAM way-of-working, the full set of elements forming

GBRAM is not considered.

In this Chapter we propose a SEMAT-kernel-based repre-

sentation of the requirements engineering phases belonging to

GBRAM. So, we use the SEMAT kernel as a way to settle

the foundations of GBRAM and prepare them to be combined

with other similar methodologies. As Jacobson et al. (2013b)

establish, “the kernel provides the mechanisms to migrate leg-

acy methods from monolithic waterfall approaches to more

modern agile ones and beyond, in an evolutionary way. It al-

lows you to change your legacy methods practice-by-practice,

while maintaining and improving the team ability to deliver.”

The Chapter is organized as follows: In Section 2 we de-

scribe the main elements of the goal-oriented requirements

specification, especially the GBRAM method
1
. In Section 3

we describe the processes carried out by representing the

GBRAM method into the SEMAT kernel. Finally, in Section

4 we present some conclusions and future work.

1
 The theoretical framework related to SEMAT is com-

pletely described in the Preface of this book.

Chapter #3

GBRAM from a SEMAT Perspective

C.M. Zapata
Universidad Nacional de Colombia

L. Castro
Universidad Del Quindío

F.A. Vargas
Tecnológico de Antioquia

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #3, pp. 21–26, ISBN 978-958-775-080-5

 22

2 THEORETICAL FRAMEWORK

2.1 GORE (Goal-Oriented Requirements

Engineering)

Goals are promoted in this approach as the basis for the soft-

ware requirements. Hence, the purpose of the system—

represented by goals—is included as an intentional point of

view of the system. The introduction of an intentional point

of view allows for the stakeholders to express their needs in a

more natural manner, focusing on what they want—their

goals—instead of the way to achieve them (conventional re-

quirements). From the goals, requirements can be derived as

ways to achieve such goals (González-Baixauli, Laguna &

Prado Leite, 2004).

2.1.1 I*

Yu (1995) proposed this goal-oriented language which in-

cludes nodes representing actors, goals, tasks, and resources.

The relationships among nodes are also represented. I* in-

cludes the idea of softgoals. The main feature of the business

modeling in other fields of requirement engineering is the im-

portance of the agents. An agent is defined as an organiza-

tional entity, which has goals and can either perform tasks or

use resources for achieving those goals. Also, an agent can

help other agents to achieve their goals.

2.1.2 KAOS

Dardenne et al. (1993) proposed this the tree-based represen-

tation of goals which is focused on performing the process of

formal analysis of requirements. The process for the mapping

of KAOS goals diagram requires the secondary goals subro-

gating the general goals and the subsequent subrogated

goals—considered elementary or atomic goals. Expectations,

requirements, and domain properties can be considered as leaf

elements in this representation.

2.1.3 TROPOS

Castro et al. (2002) propose this methodology for the organi-

zation modeling, widely used in the early processes of soft-

ware requirements elicitation. This methodology allows for

capture the “what”, the “how”, and the “why” of software

development in the organization. This methodology compris-

es a detailed description of the system dependencies. Also,

the adequate specification of functional and non-functional

requirements can be completed by using this methodology.

2.1.4 GBRAM (Goal-Based Requirements Analysis

Method)

GBRAM was designed for identifying, elaborating, refining,

and organizing goals for requirements specification (Antón,

1997). GBRAM includes the initial identification and abstrac-

tion of goals for all available information sources. Lastly, the

goals are translated into operational requirements by generat-

ing a specification requirement document (SRD). Table 1 ex-

hibits the basic concepts included in GBRAM.

Element Additional information

Goal Representation of the high-level objectives

of the business, organization or system.

Requirement Specification of the way a goal should be

accomplished by a proposed system.

Operationali-

zation

Process of defining a goal with enough de-

tail so that its subgoals have an operation-

al definition.

Achievement

goal

A goal satisfied when its target condition

is attained.

Maintenance

goal

A goal satisfied while its target condition

remains true.

Agent Representation of either the entities or

processes aiming to achieve goals related

to an organization or system.

Constraint Requirements should be met for goal

completion. A constraint places a condi-

tion on the achievement of a goal.

Goal decom-

position

The process of subdividing a set of goals

into a logical subgroup so that system re-

quirements can be more easily understood,

defined, and specified.

Guidelines and

heuristics

Elements useful for exploring, identifying,

and organizing goals.

Scenario A behavioral description of a system and

its environment arising from restricted sit-

uations.

Goal obstacle Behaviors or goals which either prevent or

block the achievement of a given goal.

Inputs

Artifacts which can vary in accordance

with the documentation initially available

to analysts.

Outputs Artifacts resulting from activities. The fi-

nal output of GBRAM is a software re-

quirements document (SRD).

Table 1 Basic concepts included in GBRAM.

The GBRAM method includes two types of activities

(Antón, 1997): goal analysis and goal refinement. Goal analy-

sis encompasses: the exploration of documentation for goal

identification and the organization and classification of goals.

Goal refinement involves the evolution of goals starting from

the moment they are identified to the moment they are trans-

lated into operational requirements for the system specifica-

tion. Figure 1 shows the activities (ovals) and artifacts (in-

clined rectangles) involved in GBRAM.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #3, pp. 21–26, ISBN 978-958-775-080-5

 23

Figure 2. GBRAM activities from (Antón, 1997)

The goal analysis activities can be summarized as follows:

o Explore activities involve the examination of existing

documentation for the initial identification of goals.

o Identify activities include the extraction of stake-

holders, goals and their responsible agents from the

available documentation.

This type of activities comprises the following sub

activities:

- Identifying goals

- Identifying stakeholders

- Identifying agents and agent responsibilities

o Organize activities involve the classification of goals

and organization of those goals according to goal

dependency relations.

This type of activities comprises the following sub

activities:

- Eliminating redundancies and reconciling

synonymous goals

- Differentiating goals according to their target

conditions

- Specifying goal dependencies

- Constructing a goal hierarchy

The goal refinement activities can be summarized as fol-

lows:

o Refine activities entail the elimination of redundant

goals and reconciliation of synonymous goals.

o Elaborate refers to the process of analyzing the goal

set by considering possible goal obstacles and con-

structing scenarios to uncover hidden goals and re-

quirements.

This type of activities comprises the following sub

activities:

- Specifying goal obstacles

- Constructing scenarios in order to consider

alternative possible operationalization of

goals for the identification of the most plau-

sible solutions

- Identifying constraints for goal completion.

Constraints provide information regarding

possible circumstances or conditions a given

goal should meet in order to be completed

o Operationalize refers to translating goals into opera-

tional requirements for the final requirements speci-

fication.

3 GBRAM REPRESENTATION INTO THE SEMAT

KERNEL

Elvesæter et al. (2013) present a comparison of the Essence

1.0 and draft and the Software & Systems Process Engineer-

ing Metamodel (SPEM) 2.0 specifications for software engi-

neering methods from the Object Management Group

(OMG). The comparison is based on results from the

REMICS research project, in charge of defining an agile

methodology for model-driven modernization of legacy appli-

cations to service clouds. The REMICS project has partici-

pated in the Software Engineering Method and Theory

(SEMAT) initiative. SEMAT proposed a new specification

named "Essence—Kernel and Language for Software Engi-

neering Methods" (Jacobson et al., 2013) as a response to the

Request for Proposal (RFP) "A Foundation for the Agile

Creation and Enactment of Software Engineering Methods"

issued by the Object Management Group (OMG).

Elvesæter et al. (2012) present and discuss how the

SEMAT kernel language supports an agile creation and en-

actment of software engineering methods. The SEMAT ap-

proach is illustrated by modelling parts of the Scrum project

management practice.

Jacobson et al. (2013) combine agile methods with

SEMAT with the purpose of taking advantage of good prac-

tices in a methodology for the benefit of the other and sup-

porting the development of higher quality software.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #3, pp. 21–26, ISBN 978-958-775-080-5

 24

SEMAT aims to achieve standardization of software en-

gineering by means of a kernel which is intended to include a

set of common software engineering elements and serve as a

reference to relate and apply different software development

methods in the industry.

In this Chapter we propose the representation of good

practices of a goal-oriented requirements specification

(GBRAM) by using the SEMAT kernel. We define a set of

constructs—mainly work products and activities—of the

GBRAM methodology and we relate them to the alphas de-

fined in the SEMAT kernel. Once modeled in the SEMAT

kernel, we can explore the integration of the GBRAM meth-

od with other similar methods.

GBRAM defines a practice as a description of the way to

handle a specific aspect of a software engineering endeavor.

Besides, a practice is considered as set of elements necessary

to express the desired work guidance with a specific objec-

tive. Therefore, GBRAM method can be represented by the

practice construct in the SEMAT kernel. Also, GBRAM in-

cludes specific work products and activities which can be re-

lated to the alphas and activity spaces defined by SEMAT.

The subset of alphas and activity spaces needed for describing

the GBRAM constructs are shown in Figure 2. Such a figure

includes a set of universal alpha elements such as Opportuni-

ty, Stakeholders, and Requirements, and their relationships,

as well as activity spaces such as Explore Possibilities, Un-

derstand Stakeholder needs, and Understand the Require-

ments. These elements belong to the Customer and Solution

areas of concern.

Figure 2. Subset of Alphas and Space activities

Figure 3 and Figure 4 show the representation of the

GBRAM method by using the SEMAT kernel. The GBRAM

approach is mapped to the alphas of the kernel (i.e., placing

Policies into Opportunity, Agents into Stakeholders, Goal

schemas into Requirements, etc.) and to the activity spaces of

the kernel (i.e., placing Explore into Explore possibilities,

Identify into Understand stakeholder needs, Operationalize

into Understand the requirements, etc.).

Figure 3. Alphas and Work Products representation

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #3, pp. 21–26, ISBN 978-958-775-080-5

 25

Figure 4. Space activities and Activities representation

4 CONCLUSIONS AND FUTURE WORK

In this Chapter we showed how the SEMAT kernel can sup-

port the achievement of the requirements engineering stand-

ardization. Also, the SEMAT kernel is directly related to the

different software engineering methods of requirements engi-

neering, commonly the representation of the GBRAM meth-

od. We can summarize the results of the representation as fol-

lows:

 GBRAM activities can be directly traced to the

SEMAT kernel activities. The activity spaces containing such

activities are related to two areas of concern: customer and

solution. Most of the activities are related to the customer,

since GBRAM is intended to be an early requirements meth-

od.

 SEMAT kernel must permit to establish a direct rela-

tionship between different software engineering methodolo-

gies, generating that the good practices of any methodology

can be used by another.

 Goal-based best practices have a strong interaction with

the concern area customer. In this way, a solution-based

method—like Scrum (Schwaber, 2004), XP (Beck & Andres,

2004; Paulk, 2001), RUP (Kruchten, 2004), and CDM (Ora-

cle Corporation, 2000)—can be suitable for combining with

GBRAM.

Some future work can be extracted from the representa-

tion we propose in this Chapter:

 Exploring the differences among the several goal-based

requirements engineering methods for determining the mini-

mum set of work products to be included in an improved ver-

sion of such methods.

 Analyzing the usage of other SEMAT kernel elements

for representing the information about this kind of methods:

for example, actors and phases can be represented by using

patterns.

 Using the GBRAM representation obtained for teaching

this kind of methods, especially in the industrial environment.

Most of the software companies develop software by using

the well-known methods (namely RUP, CDM, and, more re-

cently, SCRUM), but they ignore the existence of other

methods like the goal-oriented requirements engineering

methods.

5 REFERENCES

Anton, A. I. 1997. Goal identification and refinement in the

specification of software-based information systems.
Beck, K. & Andres, C. 2004. Extreme programming ex-

plained: embrace change. Addison-Wesley Professional.
Castro, J., Kolp, M., & Mylopoulos, J. 2002. Towards re-

quirements-driven information systems engineering: the
Tropos project. Information systems 27(6): 365-389.

Dardenne, A., Van Lamsweerde, A., & Fickas, S. 1993.
Goal-directed requirements acquisition. Science of com-
puter programming, 20(1), 3-50.

Elvesæter, B., Benguria, G., & Ilieva, S. 2013. A comparison
of the Essence 1.0 and SPEM 2.0 specifications for soft-
ware engineering methods. In Proceedings of the Third
Workshop on Process-Based Approaches for Model-
Driven Engineering (p. 2). ACM.

Elvesæter, B., Striewe, M., McNeile, A., & Berre, A. J. 2012.
Towards an Agile Foundation for the Creation and En-
actment of Software Engineering Methods: The SEMAT
Approach. In Second Workshop on Process-based ap-
proaches for Model-Driven Engineering (PMDE 2012).

Fabian, B., Gürses, S., Heisel, M., Santen, T., & Schmidt, H.
2010. A comparison of security requirements engineering
methods. Requirements engineering 15(1): 7-40.

González-Baixauli, B., Laguna, M. A., & do Prado Leite, J.
C. S. 2004. Análisis de Variabilidad con Modelos de Ob-
jetivos. In WER (pp. 77-87).

Jacobson, I., Spence, I., & Ng, P. W. 2013. Agile and
SEMAT: perfect partners. Communications of the ACM:
56(11), 53-59.

Jacobson, I., Ng, P. W., McMahon, P. E., Spence, I., & Lid-
man, S. (2013b). The essence of software Engineering:
applying the SEMAT kernel. Addison-Wesley.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #3, pp. 21–26, ISBN 978-958-775-080-5

 26

Johnson, P., Ekstedt, M., & Jacobson, I. 2012. Where's the
Theory for Software Engineering? IEEE software, 29(5),
96.

Kajko-Mattsson, M., Jacobson, I., Spence, I., McMahon, P.,
Elvesater, B., Berre, A. J., & Seymour, E. 2012. Re-
founding software engineering: The Semat initiative (In-
vited presentation). In International Conference on Soft-
ware Engineering (ICSE), 2012 34th (pp. 1649-1650).
IEEE.

Kavakli, E. 2002. Goal-oriented requirements engineering: A
unifying framework. Requirements Engineering 6(4):
237-251.

Kruchten, P. 2004. The rational unified process: an intro-
duction. Addison-Wesley Professional.

Malihe Tabatabaie, Fiona A.C. Polack, and Richard F. Paige.
2010. Evaluating Goal-Oriented Analysis in the Domain
of Enterprise Information Systems. Enterprise Information
Systems. Communications in Computer and Information
Science Vol, 109: pp 62-70

Marcal, A. S. C., de Freitas, B. C. C., Furtado Soares, F. S.,
& Belchior, A. D. 2007. 31st IEEE Mapping CMMI pro-
ject management process areas to SCRUM practices. In
Software Engineering Workshop SEW 2007. (pp. 13-22).
IEEE.

ORACLE Corporation. 2000. Oracle method CDM quick
tour.

Paulk, M. C. 2001. Extreme programming from a CMM per-
spective. IEEE Software 18(6): 19-26.

Schwaber, K. 2004. Agile project management with Scrum.
O'Reilly Media, Inc.

Thórisson, K. R., Benko, H., Abramov, D., Arnold, A.,
Maskey, S., & Vaseekaran, A. 2004. Constructionist de-
sign methodology for interactive intelligences. AI Maga-
zine 25(4): 77.

Yu, E. 1995. Modelling Strategic Relationships for Process
Reengineering. Ph.D. Thesis, University of Toronto, To-
ronto.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #4, pp. 27–32, ISBN 978-958-775-080-5

1. INTRODUCTION

Requirements specification is the first step performed in a

software development process in order to understand and

analyze the stakeholder needs. Several methods have been

defined for driving the requirements specification process.

Some of them are based on scenarios, business processes,

and goals, amongst others. Such methods can be formally

represented by using meta-models, pre-conceptual

schemas, ontologies, etc., allowing for transformations and

establishing constraints among the elements of the method.

However, no comparison is possible between the methods,

because their elements are not widely accepted and

therefore not suitable for specific uses.

The SEMAT (Software Engineering Method and

Theory) initiative has been proposed for re-founding the

software engineering, by creating a kernel of widely

accepted elements and promoting the standardized

representation of methods and practices with it. UML

(Unified Modeling Language) diagrams and formal

languages are selected as the basis for this representation.

SEMAT-kernel-based representations are intended to be

mixable and comparable, since they are based on a

common ground.

As a way to promote the usage of the SEMAT kernel,

in this Chapter we develop the representation of the

requirements specification phase by using some of the

essential elements of the SEMAT kernel, like alphas,

activity spaces, work products, and the card-based usage of

the kernel. The resulting representation is suitable for

analyzing, comparing, and complementing several existing

methods.

This Chapter is organized as follows: Section 2 is

devoted to the conceptual framework basis of this project;

in Section 3 we present the background; the proposed

representation is included in Section 4; conclusions and

future work are established in Section 5.

2. CONCEPTUAL FRAMEWORK
1

Several software development methods have been used to

formalize the stakeholder requirements and convert them

into software specifications, comprising a set of activities

to carry out the conversion (Jacobson et al., 2001). Such

software development methods commonly use the Unified

Modeling Language (UML) for representing the

conceptual schema of the software system to be built

(Tamayo, 2007).

A software specification includes a set of elements for

supporting all the involved actors in the process of

analyzing and understanding the stakeholder needs. Indeed,

the end user of the product describes what he really wants

to get in this specification. Consequently, the software

specification is useful for checking the correctness of the

source code, since it describes interfaces in detail, such as

user, software, hardware, and communications, as well as

customer requirements and system attributes among others

(Cobo and Morales, 2013).

The requirements specification is commonly made by

using either natural language descriptions or knowledge

representation languages (KRL), such as the UML

diagrams. Natural language specifications lead to

ambiguity problems, inaccuracy, and inconsistency.

(Falgade, 2011).

Most of the software development methods use a

graphical modeling language called UML. In 1997, the

Object Management Group (OMG) accepted UML to be

the standard modeling language for developing object-

oriented systems. UML offers a wide variety of diagrams

to visualize the system from several perspectives. 13

diagrams are included the more recent UML specification.

1 The theoretical framework related to SEMAT is

completely described in the Preface of this book.

Chapter #4

Representing Software Specifications in the SEMAT kernel

C. M. Zapata
Universidad Nacional de Colombia. Medellín. Antioquia. Colombia.

P. A. Tamayo
Institución Universitaria de Envigado. Envigado. Antioquia. Colombia.

R. Manjarrés

Politécnico Colombiano Jorge Isaza Cadavid. Medellín. Antioquia. Colombia.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #4, pp. 27–32, ISBN 978-958-775-080-5

28

The UML taxonomy is presented in Figure 1 (OMG,

2014). The contents of the diagrams are the following:

 Class Diagram: describes the static structure of a

system. The class diagram is used during the analysis

and design phases of the software development

process. The main goal of this diagram is to define the

conceptual design of the information the system will

handle and the components responsible for the

operation.

 Composite Structure Diagram: shows the internal

structure of a classifier, including its interaction points

with other parts of the system.

 Component Diagram: specifies a set of constructs

which can be used to define software systems of any

size and complexity. The diagram specifies a

component as a modular unit with well-defined

interfaces that can be changed in its environment.

 Deployment Diagram: specifies a set of constructs

which can be used to define the execution architecture

of systems. The constructs are represented by nodes.

 Object diagram: uses a subset of class diagram

elements for emphasizing the relationship between

instances of the classes at some instance in time.

Figure 1. UML taxonomy. Taken from OMG (2014)

 Package diagram: describes how a system is divided

into logical groups and shows the dependencies among

these groups.

 Activity diagram: describes the functionality of the

software in a high level of abstraction, emphasizing

the sequence and conditions for coordinating lower-

level behaviors.

 Use Case Diagram: describes the functional

requirements of the system in terms of sequences of

actions, including variants the system or other entity

can perform by interacting with actors of the system.

 State Machine Diagram: models the behavior of a

discrete system by using finite state transitions.

Furthermore, state machine diagram can be used to

represent the usage protocol for a part of the system.

 Sequence Diagram: describes an interaction by

focusing on the sequence of messages exchanged,

along with their corresponding specifications of events

in the lifelines.

 Communication Diagram: shows how objects

cooperate to execute a transaction, i.e., how specific

instances of the classes work together to achieve a

common goal.

 Interaction Overview Diagram: promotes overview of

the control flow and implements the class diagram

associations by passing messages from one object to

another.

 Timing Diagram: describes the behavior of individual

classifiers and their interactions, focusing on the

occurrence time of events causing changes in the

modeling conditions of lifelines.

3. BACKGROUND

Software systems are documented with fully-structured

descriptions, like functional specifications, prototypes,

designs, and source code. Some other descriptions are

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #4, pp. 27–32, ISBN 978-958-775-080-5

29

used, e.g., poorly structured narrative requirements, user

manuals, test plans, and maintenance guides. For such

descriptions, Scacchi (2001) designs and implements a

hyper-textual structure allowing for the identification and

tracking of relationships between several semi-structured

descriptions of the same system, in order to configure,

validate, and maintain consistency of interrelated software

descriptions as they evolve. However, this proposal does

not allow for comparing the obtained specifications with

those ones belonging to other projects, given that they have

no fixed elements.

Wongthongtham et al. (2008) and Ji (2010) define an

ontology for software engineering consisting of 362

concepts and 303 relations. The goal of this ontology is to

facilitate communication among team members, and

provide coherent understanding of the domain knowledge

and project data. The proposed representation can be used

by multiple teams. However, no comparison is possible

among the results obtained by each, since each team can

work with different elements from the ontology.

Prakash and Rizwan (2013) model software

specifications written in natural language by using a simple

graph, obtained with the application of techniques of

natural language processing. Obtaining such a graph

requires knowledge about natural language processing,

which is not so common among the actors involved in the

software development process.

On the other hand, other approaches are used to

represent some elements of the software specification in

different formalisms. However, they don’t cover the whole

process. For example, Estrada et al. (2002) generate a

software requirements specification from a business model.

The specification consists of a use cases model and their

associated scenarios, which is the starting point to generate

a description of the system behavior and prototypes for

user interfaces.

The Software Process Engineering Meta-model

(SPEM) is standard the defined by the OMG (Object

Management Group) for representing software

development processes. SPEM allows for modeling,

documenting, presenting, managing, and exchanging

software development processes and their components by

providing syntax and a common structure for each aspect

of the process (SEPM, 2008). Moreover, Szyrko and Rubio

(2010) validate the implementation of the practices defined

at the organizational level related to the reference model.

Hence, they analyze the impact of any changes of both the

reference model and the organizational process. However,

this method is not used for all software development

processes and therefore the evaluation and comparison of

results is difficult to carry out and use in the future.

Finally, Zapata (2007) defines a pre-conceptual schema

for automatically obtaining different diagrams used in the

software specification. However, when using the defined

schema, a comparison among the different methodologies

used for the specification of software is not possible,

because no fixed starting and ending points are provided.

4. SOFTWARE SPECIFICATIONS

REPRESENTED IN THE SEMAT KERNEL

As a way to solve the problems found in the previous

section, a possible solution is representing the software

specification by using the elements found in the SEMAT

kernel. We need to represent first the practice (see the

complete set of symbols in the Preface of this book) and

the linkage with the alpha requirements (see Figure 2).

Such a representation is based on the things we always use

when writing software specifications, in this case the alpha

requirements. This practice is intended to be linked to the

area of concern solution.

Figure 2. Representation of the practice “writing software

specifications”

The software specification practice is performed to

capture, understand, and analyze software requirements.

The work products associated with the alpha requirements

are the textual representation of the stakeholder domain

and comprises several points of view of the software

(structure, behavior, and interaction). Such points of view

are represented by using UML diagrams. The composition

of these work products allows for the analyst to transform

the stakeholder needs into formal software specifications.

The main elements of the SEMAT kernel are useful for

representing the aforementioned information: work

products are the UML diagrams and the formal

specification, the only activity is transform artifacts,

belonging to the activity space understand the

requirements, and the pattern is useful for representing the

role analyst (see Figure 3). Also, these elements are the

basis for comparing and combining this practice with other

practices and methods.

In the context of SEMAT-kernel-based representations,

work products can be refined by using cards. The aim of

the work product domain representation is to visually

represent real-world objects in a stakeholder domain. So,

the first draft of this work product is the stakeholder

discourse, and the final artifact is the knowledge

representation. Regardless the software development

method used, the knowledge representation can be shaped

by using pre-conceptual schemas, user stories, BPMN

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #4, pp. 27–32, ISBN 978-958-775-080-5

30

(Business Process Modeling Notation) diagrams, and so

on. Figure 4 depicts the domain representation card.

The structure of the software specification refers to the

concepts found in the stakeholder domain and the

relationships between them. The diagrams involved in the

structure allow for modeling the main features of the

concepts and the relationships between them. The level of

detail of the diagrams is increasing while we are

approaching to the system specifications. Indeed, the main

structural features of the software system are more clearly

defined in the component diagram than the object diagram.

Composite structure diagram exhibits the highest level of

detail, since this diagram is a mixture of several others.

Figure 5 exhibits the structure diagrams card.

Figure 3. Representation of work products, activities, roles, and activity spaces of the alpha requirements.

Behavior diagrams are intended to specify the effects of

actions and events. The interaction among objects—a

subset of such effects—is represented by a subset of

behavior diagrams, called interaction diagrams. Figure 6

and 7 respectively show the work products related to

behavior diagrams and interaction diagrams. Such work

products aim to model the dynamic aspects of the software

specification.

The main goal of the formal specification work product

is to precisely describe the properties the software should

have, particularly, its specification. The card describing

this work product is presented in Figure 8. The

complementary statements can be written in languages like

OCL (Object Constraint Language) and SQL (Structured

Query Language) and the full formal specification can be

written in languages like B, Z, Oasis, etc.

Figure 4. Work product: Domain representation

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #4, pp. 27–32, ISBN 978-958-775-080-5

31

Figure 5. Work product: Structure

Figure 6. Work product: Behavior.

Figure 7. Work product: Interaction.

Figure 8. Work product: Formal specification.

As a summary, the writing software specification practice

is an artifact transformation process from the stakeholder

discourse to the formal specifications. Commonly, some

parts of the entire process are supported by automated or

semi-automated processes, but the entire process is not

completely automated and the analyst is responsible for the

final quality of the formal specification.

5. CONCLUSIONS AND FUTURE WORK.

Software specification comprises a set of artifacts ranging

from high-level to low-level requirements. Since some

authors fail in creating meta-models and representation

artifacts for studying and combining software

specifications in several software development methods, in

this Chapter we proposed a SEMAT-kernel-based

representation of the practice writing software

specifications. The usage of pre-defined terms (e.g.,

requirements) and actions (e.g., understand the

requirements) will function as a linkage between our

representation and any other practice represented by using

the SEMAT kernel. In this sense, the practices can be

compared and combined if necessary.

Some future work we can devote for complementing

our proposal is:

 Completing the representation of the writing software

specifications practice with other elements from the

SEMAT kernel. For example, we can use resources,

competencies, and levels of competency for expressing

some other information about the practice.

 Characterizing some other specification practices.

 Differencing and assembling this representation with

other similar representations. In this sense, we can

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #4, pp. 27–32, ISBN 978-958-775-080-5

32

combine practices, so we can create new methods based

on the successful elements of previous methods.

 Defining assessment methods for promoting valitation

of the SEMAT-kernel-based representations.

6. REFERENCES

Cobo, A. & Morales H. 2013. Especificación de requisitos
de software (SISCoop, 2013). Available:
http://dspace.espoch.edu.ec/bitstream/123456789/188/1
/EspecificacionRequerimientosSoftware.pdf.

Estrada, H., Martínez, M., Pastor, O., & Sánchez J. 2002.
Generación de Especificaciones de Requisitos de
Software a partir de Modelos de Negocios: un enfoque
basado en metas. In V Workshop on Requirements
Engineering. Valencia. Spain.

Fagalde P. 2011. Artefactos de especificación de
requerimientos de usabilidad. Bachelor Thesis.
Universidad de Buenos Aires. Buenos Aires. 81 p.

Jacobson, I. Booch, G. Rumbaugh, J. 2001. El Proceso
Unificado de Desarrollo de Software. Addison Wesley.

Ji, X. Q. 2010. Software Engineering Knowledge
Representation based on Ontology for Multisite
Software Development Asia-Pacific Conference on
Wearable Computing Systems.

OMG (Object Management Group). 2014. OMG Unified
Modeling Language (OMG UML), Superstructure
Version 2.4., Available: http://www.omg.org.

Prakash, R. & Rizwan, V. 2013. Representation of
knowledge from software requirements expressed in
natural language. In Sixth International Conference on
Emerging Trends in Engineering and Technology.
December 16-18, Nagpur, India.

Scacchi, W. 2001. Hypertext for Software Engineering.
Encyclopedia of Software Engineering, 2nd. Edition,
New York: John Wiley and Sons, Inc.

Szyrko, P. & Rubio, D. 2010. Definición de un
metamodelo para la validación de procesos de software
organizacionales basados en modelos estándares. In XII
Workshop de Investigadores en Ciencias de la
Computación. Calafate, Santa Cruz, Argentina.

Tamayo, P. A. 2007. Elaboración de diagramas de caso de
uso a partir de modelos verbales. M.Sc. Thesis,
Universidad Nacional de Colombia, Sede Medellín.

Wongthongtham, P., Kasisopha, N., Chang, E., & Dillon,
T. 2008. A Software Engineering Ontology as Software
Engineering Knowledge Representation. In Third 2008
International Conference on Convergence and Hybrid
Information Technology. IEEE.

Zapata, C. 2007. Definición de un esquema preconceptual
para la obtención automática de esquemas
conceptuales de UML. Ph.D. Thesis. Universidad
Nacional de Colombia. Medellín.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #5, pp. 33–39, ISBN 978-958-775-080-5

1 INTRODUCTION

The Team Software Process (TSP) framework guides engi-

neering teams in the implementation of products in develop-

ing software projects. TSP includes practices from the

CMMI-DEV model for improving the quality and productivi-

ty of engineering teams.

The SEMAT Essence kernel can be described as a set of

practices of software development methods. A practice is the

unit of adoption, planning, and execution of a process and it

is given priority over the process as a composition of practic-

es. Engineers should work out the details of team-building

and team working for themselves, besides to execute the ac-

tivities related to the software development. Since defining

these details involves considerable skill and effort, engineer-

ing teams generally follow ad-hoc team-building and team-

work processes without a formal and specific guidance. The

Essence kernel can be used in cases where team whether or

not has a documented method. The elements of the kernel are

always prevalent in any software endeavor (OMG 2012). In

this regard, a systematic and guided specification of how the

TSP practices should be developed can be suitable by using

general notations as provided by SEMAT.

In this Chapter we define a representation of TSP frame-

work into the SEMAT kernel, based on the best practices of

project management from CMMI-DEV. This approach is a

representation of the specific practices comprised in TSP as

cycles and phases, by using the meta-model components of

the kernel. The representation proposal of the TSP frame-

work includes the main elements of the SEMAT Kernel such

as: areas of concern, alphas, activity spaces, and competen-

cies. This is an alternative to facilitate the TSP adoption in

software development organizations.

The Chapter is organized as follows: in Section 2 we pre-

sent the conceptual framework about TSP, and CMMI-DEV

Model
1
. In Section 3 we describe the background related to

approaches to knowledge representation in SEMAT Essence

and graphical specifications of TSP. In Section 4 we present

our representation proposal of TSP framework into the

SEMAT kernel based on the best practices identified from the

specific activities by TSP phase/cycle. Finally, in Section 5 we

conclude and state future work.

2 CONCEPTUAL FRAMEWORK

2.1 Team Software Process

TSP was launched in 1996 by Watts Humphrey with the ob-

jective of providing an operational process for helping engi-

neers to consistently make quality work (Humphrey, 1999).

TSP is a framework guiding engineering teams in developing

high quality software products. TSP is used for improving the

quality and productivity of engineering teams and help to

meet cost and schedule commitments (Huesca, 2010). TSP

also provides a framework attached to the Personal Software

Process (PSP) (SEI 2011).

The framework defines the steps needed for establishing

an effective team working environment. Without specific

guidance, engineers should work out the details of team-

building and team working for themselves. Since the defini-

tion of these details involve considerable skills and effort and

few engineers have the experience or time for working out all

of the necessary details, engineering teams generally follow

ad-hoc team-building and teamwork processes. This situation

wastes time and it often produces poorly functioning teams

(SEI 2011).

The main elements of the TSP process include both as

PSP and TSP elements because the engineers must be trained

in these skills before they can participate in TSP team build-

ing or follow the defined TSP process (see Figure 1; Humph-

rey, 1999).

1
 The theoretical framework related to SEMAT is com-

pletely described in the Preface of this book.

Chapter #5

Representation of TSP framework into the SEMAT kernel based on
the best practices of Project management from CMMI-DEV

B. Manrique-Losada; G. P. Gasca-Hurtado & M. C. Gómez-Álvarez
Facultad de Ingeniería, Universidad de Medellín, Colombia

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #5, pp. 33–39, ISBN 978-958-775-080-5

 34

Figure 1. TSP Team-Building. (Humphrey 1999)

2.2 CMMI-DEV Model

The purpose of the CMMI-DEV model is to provide guid-

ance for applying CMMI best practices in a software devel-

opment organization. These best practices are focused on the

activities necessary for developing high quality products and

services (SEI 2010).

The CMMI-DEV model is based on the CMMI Model

Foundation or CMF (i.e., model components common to all

CMMI models and constellations or interest areas) and incor-

porates work by development organizations to adapt CMMI

for use in the development of products and services (ITSQC,

2005).

This model facilitates the work of interested people on

process improvement in a development environment. This

model also helps to understand the concept of Capability Ma-

turity Models and provides information to begin improving

the development processes, because this model is intended for

organizations interested in a reference model for an appraisal

of their development processes.

The structure of CMMI-DEV includes 22 process areas,

distributed as follows: a) 16 core process areas, and one of

them is a shared process area (see Figure 2), and b) 5 devel-

opment specific process areas: Requirements Development

(RD), Requirements Management (REQM), Technical Solu-

tion (TS), Product Integration (PI), Verification (VER) and

Validation (VAL). These process areas describe practices fo-

cused on the activities of the developer organization.

CMMI for Development (CMMI-DEV) provides practic-

es associated with the specific development by using best

practices addressing development activities applied to prod-

ucts and services. Such practices are related to the product

lifecycle from beginning to delivery.

Figure 2. Process area Core from CMMI

3 BACKGROUND

3.1 Approaches to knowledge representation in the

SEMAT Essence kernel

The members of the SEMAT initiative have presented some

approaches for representing practices and methods by using

the SEMAT Essence kernel. Some of them are as follows:

Jacobson et al. (2010) developed several graphical repre-

sentations in the framework of the SEMAT initiative, by try-

ing to explain and disseminate the principles of the kernel by

means of examples. One of them is the approach to model the

practices of use-case modeling by using SEMAT cards com-

prising: the competencies analysts and customer representa-

tive; the activities carried out in the activity space; and the re-

lated descriptive elements. In Figure 3, we show the example

for the practice find actors and use cases. Also, Jacobson et

al. presented as sample the general framework of RUP for

trying to characterize the elements of a software methodology

(see Figure 4).

Berre (2012) presented an approach for SCRUM Essen-

tials Practices in terms of SEMAT elements. He adds two Al-

phas, Requirements Item and System Element, directed to the

Requirements and the Software System, as well as a Bug for

monitoring the health of the Software System. The approach

is shown in Figure 5.

3.2 Approaches for representing the TSP framework

TSP is presented in the state of the art in terms of its organi-

zation and operation (Yu et al. 2009). The TSP structure is

related to the content from the management aspects and the

TSP process is associated with the technical aspects. Depic-

tions of TSP are mainly based on the dynamic aspects, as a

visual guide for showing how TSP uses several development

cycles to build the final product, and usually they lack a

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #5, pp. 33–39, ISBN 978-958-775-080-5

 35

standard notation for facilitating the application of the

framework.

Essential Unified Process 3.1 © Ivar Jacobson International, 2005-2007 Use Case Essentials 2.3 / rev. 40

Find Actors and Use Cases

Opportunity Backlog Find actors and use cases to:

• Agree on specified system behavior

• Establish the system boundary

• Scope the system

• Agree on the value the system provides

• Identify ways of using & testing system

The activity is completed when:

• The Use-Case Model: Value Established or
beyond

• Use Case Specifications: Briefly Described
or beyond

• Supplementary Requirements: Initiated

The activity contributes to achieving:

• Specified System : Shared
• Use-Case Module: Scoped

Recommended approaches:

• Use-case modeling workshop

• Structure the use-case model

• Handle changes (to the use-case model)

Specified

System

Analyst

Customer

Representative

Specified System

Use-Case Module

Supplementary Requirements

Use-Case Specification

Use-Case Model

Specify the System

Figure 3. Practice of use-case modeling in SEMAT. (Ja-

cobson et al., 2010)

Figure 4. General Framework of RUP (Jacobson et al.,

2010)

Figure 5. Approach for Scrum Essentials Practices in

SEMAT (Berre, 2012).

Regardless of the organization, TSP has the following

components: formation, launch, and work (Humphrey 1999).

We have only found graphical representations about team-

work and its five parts of content of team, as we show in Fig-

ure 6.

Figure 6. Representation of TSP team-working (Humph-

rey, 1999)

Regarding the TSP operation, McAndrews (2000) pre-

sents a chart of TSP process as a set of phases and activities,

as we show in Figure 7.

Figure 7. Representation of TSP Process (McAndrews,

2000).

In addition to the previous chart, some representations of

the key points on TSP were developed in the TSP Symposi-

um 2012 (SEI, 2012). We found interesting charts about con-

text, related concepts, goals, key practices, and functions of

TSP. Some of them are presented in Figure 8.

Figure 8. Representation TSP key points at TSP Symposium

(SEI 2012).

Similar to the previous representations, several authors

have developed illustrations for different application contexts.

They try to specify the relationships between TSP and specif-

ic stages of software development, as we present in Figure 9

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #5, pp. 33–39, ISBN 978-958-775-080-5

 36

to show the usage of Architecture-Centric Engineering pro-

cess in a TSP Project.

Figure 9. Architecture-Centric Engineering process on a

TSP Project Representation (Carballo et al., 2011).

No representations specifically oriented to TSP practices

were found in the state-of-the-art review, related to the nota-

tion given either by the SEMAT Essence kernel or any other

formalism.

4 PROPOSAL OF TSP REPRESENTATION INTO

THE SEMAT KERNEL

4.1 Method for defining the representation

The following phases were defined to make the representa-

tion of a model or framework taking into account the

SEMAT kernel structure:

Basic Phase: In this phase we studied SEMAT including

kernel elements and language. This phase comprises two ac-

tivities:

Activity 1.1 Study SEMAT Kernel structure; in this activi-

ty, the main elements of SEMAT Kernel were identified: are-

as of concern, activity spaces, alphas, alpha states, and com-

petencies.

Activity 1.2 Understand SEMAT Essence Language; this

activity allowed for accessing the knowledge of the graphical

representation associated with each element of SEMAT Ker-

nel.

Specific Phase: In this phase we analyzed the framework

structure and the components of the framework to be repre-

sent into the SEMAT kernel. This phase comprises two activ-

ities:

Activity 2.1 Identify the model or framework to represent

into SEMAT; in this activity, both CMMI Model and TSP

Framework were studied. As a result of the analysis of

SEMAT areas of concern, activity spaces and alphas; a simi-

larity between the TSP and SEMAT objectives, from the

point of view of the team management is identified. This simi-

larity determines the relevance of representing TSP Frame-

work into the SEMAT kernel in order to propose an alterna-

tive approach to the new proposal SEMAT for companies

that adopt TSP framework for managing their software de-

velopment teams.

Activity 2.2 Define the TSP framework components from

SEMAT Kernel elements; in this activity, the following

SEMAT elements were identified for each TSP framework

phase: a) areas of concern, b) activity spaces, c) alphas, d) al-

pha states, e) activities, f) work products, and g) competen-

cies. For example, in the Planning phase the following ele-

ments were identified for the alpha work:

 Activity space: coordinate Activity

 Alpha state: prepared

 Activities: (1) define the tasks plan and (2) define

quality plan of the project.

 Work products: (1) project plan and (2) schedule

form.

 Competencies: (1) leadership and (2) management.

Representation Phase: The objective of this phase is to

represent TSP into SEMAT according to its language and

kernel. These two activities are proposed for achieving this

objective:

Activity 3.1 Design the graphical representation of TSP

framework and its phases according to the SEMAT Essence

language; we established a graphic structure for each of the

phases of this framework, grouping them according to the

scripts of TSP.

Activity 3.2 Describe the graphical representation of each

phase of framework; in order to supplement the graphical

representation, we provided an explanation that facilitates the

understanding of the representation proposal.

4.2 Representation Proposal

According to the method defined and presented in the previ-

ous Section, we design a general framework of the proposal,

based on the TSP structure and flow—in terms of cycles and

sequential phases as we show in Figure 10. We define the set

of activities for each phase as practices for the representation

in the SEMAT kernel.

The general framework was designed by specifying for

each activity/cycle the alpha states progressed by the activi-

ties comprised in the TSP structure, as we present in Figure

11. Thus, for each TSP phase, we identified the alpha in-

volved and its respective alpha states. Such alpha states are

reached by means of the development of a set of activities,

forming practices. We represent in a specific chart the prac-

tices for each alpha (α) by means of activity spaces compos-

ing by the sequence of activities, the work products produced

or updated, and the competences involved.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #5, pp. 33–39, ISBN 978-958-775-080-5

 37

Figure 10. TSP structure and flow (Yu et al., 2009)

Solution

 LAUNCH

 STRATEGY

 PLAN

 M
 O
 N
 I
 T
 O
 R
 I
 N
 G

 REQUIREMENTS

 DESIGN

 IMPLEMENTATION

 TEST

 POSTMORTEM

ZZ

TSP STRUCTURE

FORMED

BOUNDED

FULLFILLED

Endeavor

ZZ

PREPARED

FULLFILLED

α Work α Requirements

FORMED

BOUNDED

FULLFILLED

α Team

IN PLACE

α Way-of-
working

PREPARED

FOUNDATION
ESTABLISHED

PREPARED BOUNDED

PERFORMING

SEMAT ALPHAS α Software
System

USABLE

ARCHITECTURE
SELECTED

USABLE

RELEASED

Figure 11. General framework of the TSP representation in the SEMAT kernel

The Planning phase of TSP is represented in Figure 12.

As an example for reading and interpreting our representation

proposal, we will explain such a representation as follows: In

the planning phase a team wants to achieve a goal by pro-

gressing the alphas work and team. In order to do this, the

competencies management and leadership assess the current

state of each alpha (e.g., α work is prepared) and then, they

have to develop a set of activities (in the frame of an activity

space coordinate activity) in order to act as the goal of the

development effort. According to the previous dynamic, we

present the other TSP phases in Figures 13-16.

5 CONCLUSIONS AND FUTURE WORK

In this Chapter we proposed an approach for representing the

TSP framework by using the SEMAT kernel. SEMAT is a set

of composed practices of software development methods

while TSP is a proposal that guides engineering teams in de-

veloping software intensive products.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #5, pp. 33–39, ISBN 978-958-775-080-5

 38

PREPARED

ff

α Work

2/6

Define the tasks plan
 (products, responsibles

and activities)

Define quality plan
of the project

FORMED

ff

α Team

2/5

Project
plan

En
d

e
av

o
r

Prepare the individual
plan for members team

Balance the workload

Leader
ship

SCHEDU
LE-Form

TASK
and

WEEK
Forms

Coordinate Activitiy

Manag
ement

Figure 12. Planning Practices

FORMED

ff

α Requirements

2/5

Analysi
s

Document the
requirements

Requirements
specificatons

document

Develop the
requirements
specifications

Define system
tests

Review the
requirements

Inspect the
requirements
specifications

Produce the user
Manual outline

Validate the
requirements

System
tests

User
manual

FORMED

ff

α Team

2/5

PREPARED

ff

α Work

2/6

Form the team Scope
document

Produce the overall
Project plan

Produce detailed
requirements phase

plan

Reassess project
risks and exposures

Project
plan

Requireme
nts-phase

plan

So
lu

ti
o

n

Leaders
hip

Custom
er

Understand the Requirements

Prepare to do the work

En
d

e
av

o
r

Figure 13. Launch Practices

Both proposals are oriented to improve the development

of software process. The TSP-proposal is focused on achiev-

ing the implementation of the CMMI model in the software

development organizations. Nowadays, the industry and the

academy have to incorporate new initiatives, such as

SEMAT, in order to improve the implementation of best

practices in development software organizations. This new

form includes the discipline of the development software team

to define the kernel approach from SEMAT.

For including our approach (TSP into SEMAT) was nec-

essary some organization about the cycles, phases, and activi-

ties from TSP for obtaining a SEMAT representation in terms

of practices. The cycles and phases were defined from the

study and understanding both SEMAT and TSP main con-

cepts. From this basis, we analyze the components of the

SEMAT kernel and we define the representation of each TSP

phase during the development process.

FOUNDATION
ESTABLISHED

ff

α Way-of-working

2/6

Set overview of
development strategy

Select development
strategy

Establish the
strategy criteria

Document the strategy

PREPARED

ff

α Work

1/6

BOUNDED

ff

α Requirements

2/6

Prelimi
nary

Project
plan

Devel
opme

nt

Create the conceptual
design of product

Describe general
 funcionalities by phase

So
lu

ti
o

n

Determine preliminary
estimation of
time and size

Assess main risks
of the project

Prepare the plan of
Software

 configuration
management

Project
overview

Leade
rship

Product
charter

Conceptua
l design

List of
funcionalit

ies

En
d

e
av

o
r

Prepare to do the work

Mana
geme

nt

Shape the system

Figure 14. Strategy Practices

USABLE

ff

α Software system

3/6

Develo
pment

Record product size

Record executed time

IN USE

ff

α Way-of-working

3/5

Leade
rship

SUMP,
SUMQ,
SUMS
Forms

So
lu

ti
o

n

Record defects percentage

Record amount of
defects by phase

Record injected and
removed defects by

phase
 (REQ, DS, IMP, TST)

Review planned
and actual values

Record development
time by phase

Record review
time by phase

Record removed defects
time by phase

SUMP,
SUMQ,
SUMS
Forms

(updated)

Implement the system

Track Progress

En
d

e
av

o
r

Testing

Figure 15. Monitoring Practices

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #5, pp. 33–39, ISBN 978-958-775-080-5

 39

PERFORMING
ff

α Team

4/5

Identify improvement
actions

Document results

IN PLACE

ff

α Way-of-working

4/6

Leade
rship

Report of
results

Analyze data of
the process

Evaluate results

En
d

e
avo

r

En
d

e
av

o
r

Support the team

Figure 16. Postmortem Practices

The proposed representation can be used as a guideline

and overview of the method for incorporating the SEMAT

kernel components in software development teams including

the TSP discipline.

The general framework and specific practices comprising

the representation proposed are focused on the following el-

ements of the SEMAT kernel: areas of concern, activity spac-

es, alphas, alpha states, work products, and competencies.

For designing the general framework of the TSP representa-

tion in the SEMAT kernel, we chose the essentials phases of

TSP and for each one we defined practices associated. Then,

we represented them by using the elements of the SEMAT

kernel (see Figure 11).

Future work includes the application of our representation

in a development software team in educational context and

the analysis of the improvement opportunities in the represen-

tation. When this representation is updated, we expect to ap-

ply the way-of working of SEMAT in a real project, taking

into account the phases, practices, and works products of

TSP.

REFERENCES

Berre, A. 2012. Essence – Kernel and Language for Software

Engineering Methods. The joint submission for the OMG
FACESEM standard “A Foundation for the Agile Crea-
tion and Enactment of Software Engineering Methods”.

Carballo, L; McHale, J. & Nord, R. 2011. Using Architec-
ture-Centric Engineering on a TSP Project.

Humphrey, W.S. 1999. Introduction to the Team Software
Process. Massachusetts: Addison Wesley.

Huesca, A.M. 2010. Best Practices for TSP Implementation
On Outsourced Application Development Projects. Key-
note of SEPG-NA.

ITSQC Carnegie Mellon.2005.Comparing The eSCM – CL
and CMMI V1.1.

Jacobson, I.; Meyer, B. & Soley, R. 2010. Software Engi-
neering Method and Theory – A Vision Statement.

Jacobson, I.; Ng. P.; McMahon, P.E.; Spence, I. & Lidman,
S. 2012. The Essence of Software Engineering: The
SEMAT Kernel. Communications of the ACM 55(12):
42-49

McAndrews, D.R. 2000. The Team Software Process (TSP):
An Overview and Preliminary Results of Using Disci-
plined Practices.

Object Management Group (OMG). 2012. Essence – Kernel
and Language for Software Engineering Methods.

Software Engineering Institute (SEI). 2010. CMMI for De-
velopment, Versión 1.3.

Software Engineering Institute (SEI). 2011. A dedication to
Excellence. In Proceedings of the 6th Annual Software
Engineering Institute (SEI) Team Software Process (TSP)
Symposium.

Software Engineering Institute (SEI). 2012. TSP Symposium
2012. St. Petersburg, FL.

Yung, H.; Bao, X. & Yang, S. 2009. Research and Improve-
ment of Team Software Process. In 2009 World Congress
of Computer Science and Information Engineering.

Zapata, C.M.; Maturana, G.V. & Castro, L.F. 2013. Tutorial
sobre la iniciativa Semat y el juego MetriCC. In Proceed-
ings of the 8CCC—Octavo Congreso Colombiano de
Computación.

This page intentionally left blank

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Capítulo #6, pp. 41–45, ISBN 978-958-775-080-5

1. INTRODUCTION

The practices described in the Personal Software Process,

PSP, show their usefulness in improving the quality of

software products by improving the personal processes of

developers (Humphry, 2002). The importance of having

processes and methods that improve software product quality

leads researchers to look for ways to adapt PSP practices and

principles to existing development methodologies.

Shen et al. (2013) carried out a systematic state-of-the-art

review in which they identified PSP adaptations for the

software development methods SCRUM, RUP (Rational

Unified Process), DSDM (Dynamic Systems Development

Method), and XP (eXtreme Programming), as well as XP

(eXtreme Programming). These adaptations demonstrate the

uses of PSP practices combined with the practices used by

each of these methods. Nevertheless, the number and form of

the adaptations of these approaches for software

development is different. These differences make the

comparison of commonalities between the PSP

adaptations—in the context of the aforementioned software

development methods—difficult, and impede the use of PSP

practices in software development methods as well as its re-

utilization in other development methodologies.

In this Chapter we present a review of some PSP

adaptations to software development methods and we

propose a PSP representation in the SEMAT kernel. Based

on the above, SCRUM-PSP and PXP (Personal Extreme

Programming) are analyzed in Section 2, which adapt agile

development methods such as SCRUM and XP. Then, based

on that analysis, in Section 3 an adaptation is proposed that

allows the re-utilization of PSP practices in different

software development methods. In Section 4 we present an

implementation of the proposed solution by using the

SCRUM development method. Conclusions are discussed in

Section 5. Be advised that the theoretical framework needed

to understand the SEMAT-kernel-based representation is

presented in the Preface of this book.

2. PRIOR ADAPTATIONS

2.1 SCRUM-PSP

This PSP adaptation of the SCRUM development method

combines the administrative practices of an agile method

with the individual practices of PSP, in order to improve the

estimation and quality control capabilities of software

products (Rong et al., 2013).

Within each SCRUM-PSP iteration, the iterative cycle of

SCRUM is utilized and elements of PSP are incorporated.

The main element is the record of programmer efficiency

data. In order to carry out the recording of this data, PSP

templates are used, as described in the introduction to PSP

(Rong et al., 2013). This data is employed to improve the

following SCRUM aspects:

 Estimation: the historic data obtained via PSP helps to

determine if the reach of the project and the number of

programmers is adequate to complete the project within

the estimated time.

 Task planning: the programmers—by using PSP—are

able to carry out better planning of activities that are to

be performed during an iteration.

 Risk Reduction: the building a history of the factors that

reduce programmer efficiency allows for actions that

eliminate or reduce the effect of these factors.

 Reviews: the PSP reviews allow for the identification of

software errors and defects produced by programmers.

Also, by combining these with the SCRUM team

practices, the developers learn about the errors

committed by other team members.

2.2 PERSONAL EXTREME PROGRAMMING—PXP

PXP is presented as a software development methodology

that, though based on XP, does not include all XP practices.

On the other side, PXP utilizes some PSP practices but also

does not use all these PSP practices (Dzhurov et al., 2009).

The XP practices used by PXP are:

 Continuous Integration.

Chapter #6

PSP Implementations for agile methods: a SEMAT-based approach

D. E. Brown

I.A. Hatchery, Los Angeles, CA

W. A. Arévalo Camacho & J. O. Muñoz Rengifo

Universidad Nacional de Colombia, Medellin

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Capítulo #6, pp. 41–45, ISBN 978-958-775-080-5

 42

 Simple design.

 Short version release cycles.

 Refactoring.

 Test oriented development.

 Spike Solutions.

The practices taken from PSP are:

 Time recording.

 Defect history.

 Defect type standardization.

 Size Estimation.

 Process improvement proposals.

 Code reviews.

“Coding Conventions” are an additional PXP element.

These standards are agreed upon by team members so that

everyone uses the same techniques in code generation tasks.

PXP employs PSP practices in order to build a history of

programmer efficiency and, with that information, obtain a

better estimation of the project and to be better able to

identify what needs to be improved gaining efficiency in the

software development process. Nevertheless, it does not use

the PSP templates for that information history.

PXP uses the Microsoft Visual Studio Team System

(VSTS) to perform the information recording. It uses Unit

tests done on the different software components in order to

measure software product quality. The more unit tests done

on a component the better its quality will be.

3. PSP REPRESENTATION IN THE SEMAT

KERNEL

In the state-of-the-art review, evidence is encountered that

the need exists to implement, in the interior of the

development methods, practices like those proposed by PSP.

One example of this evidence is encountered in Flacid

SCRUM (Williams, 2012). It has been said that a

development team employs Flacid SCRUM when they

understand the SCRUM principles and how to apply them,

however low quality code is being developed.

The above brings project software delays with it, due to

the need to continually rewriting code that is not well

designed. Adaptations, such as SCRUM-PSP and PXP

employ PSP practices in order to help programmers to

generate high quality code and, in addition to this, be able to

do more precise estimations. Nevertheless, differences exist

between these adaptations: SCRUM-PSP employs PSP

elements as they are described in the Introduction to PSP

while PXP only uses those PSP elements that the authors feel

are necessary to obtain better software product quality

(Dzhurov et al, 2009).

Additionally, differences exist in the ways in which

software quality is measured in these methods: SCRUM-PSP

measures quality based on the number of lines of code and

PXP measures quality based on the number of unit tests.

Also, the language employed in these two methodologies

is different: for SCRUM-PSP the changes to processes are

realized within the “risk” element while in PXP, these

changes are done within the “proposal for process

improvement” element. This is also the case for recording

history data: in SCRUM-PSP the history is produced in the

“software development process,” while in PXP the history is

divided among “time history” and “defect history.”

In order that the PSP practices can be reutilized these

need to be expressed in a common language that permits

their application to any software development methodology.

SEMAT presents a common language by which any software

practice can be expressed, regardless of the software

development method in which it is utilized. This

characteristic permits the representation of the software

practices in the SEMAT kernel that is presented below.

PSP is shown in Figure 1 as an alpha way of working.

The seven levels of PSP are represented as states of a new

sub-alpha named PSP Compliance. The representation of the

levels of PSP as states of the new sub-alpha allows for the

development team to know the state in which PSP is

encountered. For example, the development team can present

the following characteristics:

 An ordered process for carrying out tasks.

 A process that allows for a basic time measurement that

these tasks take and the defects introduced in the

development of these tasks.

 Coding conventions inside the team.

For the case presented in Figure 1, the development team

complies with the activities that are proposed by PSP0 and is

currently realizing one of the activities proposed by PSP0.1

4. PSP AND SCRUM IN THE SEMAT KERNEL

The representation of PSP in the SEMAT kernel describes

the activities that need to be carried out by the development

team in abstract form in each of the states of the sub-alpha

PSP Compliance. Nevertheless, as the PXP developers

demonstrated, the activities of PSP can be developed without

the necessity of employing templates described in the

Introduction to PSP (Rong et al., 2010).

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Capítulo #6, pp. 41–45, ISBN 978-958-775-080-5

 43

W
ay

 o
f

W
o

rk
in

g
PSP 0 PSP 0.1 PSP 1 PSP 1.1 PSP 2 PSP 2.1 PSP 3

PSP

1

Project

Plan

summary

form

Way of
working

PSP

Compliance

PSP 0

Defined process

 to carry out tasks

Task Measurement

Work team

organization

Record

time spent

PSP 0.1

Coding Conventions

Process improvement

proposals

Use coding

conventions

Use double

spacing

Record

improvement

proposals

PSP 1

Size Estimation

Test reports

Record task

time estimates

Record test

results

PSP 1.1

Task Planning

Delivery Schedule

Planning

Record necessary

activities to

complete a task

Define

delivery dates

PSP 2

Code Reviews

Design Reviews

Meet to review

code

Meet to

review the

application

design

PSP 2.1

User Interface

Design.

Design using

graphic design

tools

PSP 3

Cyclic Development

Review existing

process

Deliver

versions

according to

the schedule

Figure 1. PSP Representation in the SEMAT Kernel

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Capítulo #6, pp. 41–45, ISBN 978-958-775-080-5

 44

The history of measurements, the estimations and the

code revisions, the schedules and the improvement processes

can be carried out via software applications designed to

support these activities. Below, the use of the PSP practices

applied under the SCRUM framework will be shown. In

order to carry out the measurement, planning, scheduling and

improvement processes, the Jira administration software will

be employed (Codina Navarro, 2010).

The use of Git to document design reviews may be

problematic as it is a structure without any predefined format

and many of the comments may relate to other issues than

just design review. A Git Pull can be to begin a new branch

or a new feature not related to existing design. This could get

lost in the plethora of changes tracked by Git. However, we

used Github, a cloud implantation of GIT version control

(Dabbish, et all, 2012), in order to support code review

activities.

In Figure 2, a SCRUM in SEMAT approach is presented

without including the PSP elements.

SCRUM
1

Requirements

Software

system

Work

Sprint

Team

SCRUM

Team

Features

Backlog

Sprint

Backlog

Increment
1 .. *

1

1 .. *

1 .. *

Figure 2. SCRUM Representation without PSP elements

In Figure 3, the SCRUM respresentation is presented

employing SEMAT elements. When this last Figure is

compared with the PSP representation in Figure 1, it can be

seen that the activities described in the sub-alpha states of

PSP compliance are concrete activities that are carried out in

Jira or in Github. Thus, having an abstract representation of

PSP practices in SEMAT, we can achieve a concrete

representation of those practices in a software development

method. The above shows the flexibility of the PSP

representation in SEMAT and its capacity to be reusable

with different software development methodologies.

5. CONCLUSIONS

The PSP practices are useful in reducing defects in software

products. Adaptations of these practices exist for diverse

agile development methods, but this diversity makes the

comparison of the form in which these methods employ PSP

practices difficult.

Our representation employs the SEMAT kernel to

facilitate the realization of PSP practices in different

software development methods. The representation defines,

within the alpha workflow, a new sub-alpha, PSP

compliance. The PSP level of the team can be identified by

comparing the practices and activities that are being utilized,

and with the activities described in each of the PSP

compliant sub-alpha states.

This solution was adapted to the SCRUM development

method where its adaptability can be appreciated. This was

achieved due to the fact that the representation defines the

activities that need to be carried out by the team to achieve

the PSP levels instead of needing to define tools that should

to be used to obtain said levels.

In the example, two tools are employed: Jira for the

estimation of tasks and the recording of the time spent in

these tasks, and Github, to carry out code reviews by the

team members. This flexibility allows for different tools to

be utilized for achieving the objectives proposed by PSP and,

at the same time, facilitates the adaptation of PSP practices

to different software development methodologies.

6. REFERENCES

Humphrey, W. 2002. Three process perspectives:
organizations, teams, and people. Annals of Software
Engineering 14(1–4): 39–72.

Shen, M, Rong, G & Shao D. 2013. Integrating PSP with
agile process:a systematic review. In Proceedings of the
2nd International Conference On Systems Engineering
and Modeling, 805–811.

Rong, G, Shao, D & Zhang, H. 2010. SCRUM-PSP:
Embracing Process Agility and Discipline. In
Proceedings of the 2010 Asia Pacific Software
Engineering Conference, 316–325.

Dzhurov, Y, Krasteva, I & Ilieva, S. 2009. Personal Extreme
Programming–An Agile Process for Autonomous
Developers. In Proceedings of the International
Conference on Software, Services & Sematic
Technologies.

Williams, L. 2012. What agile teams think of agile
principles. Communications of the ACM 55(4): 71–76.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Capítulo #6, pp. 41–45, ISBN 978-958-775-080-5

 45

SCRUM
1

Requirements

Software

system

Work

Sprint

Team

SCRUM

Team

Features

Backlog

Sprint

Backlog

Increment1 .. *

1

1 .. *

1 .. *

1
Project

Plan

summary

form

Way of
working

PSP

Compliance

PSP 0

Defined process

 to carry out tasks

Task Measurement

Use Jira

Record time

spent in Jira tasks

PSP 1

Size Estimation

Test reports

Estimate feature
size as story

points in Jira

Record test
failures as

Jira bugs

PSP 1.1

Task Planning

Delivery Schedule

Planning

Record necessary

activities to

complete a task

Complete tasks

by end of Sprint

PSP 2

Code Reviews

Design Reviews

Employ Github

pull requests

Use comments in
pull GIT pull
requests to

document design

errors

Figure 3. Scrum-PSP Representation with SEMAT elements

Codina-Navarro, F. 2010. Desarrollo de una aplicación para
la gestión de calidad de los procesos en el entorno JIRA.
Universitat Politècnica de València.

Dabbish, L, Stuart, C, Tsay, J & Herbsleb, J. 2012. Social
coding in GitHub. In Proceeedings of the ACM 2012

conference on Computer Supported Cooperative Work -
CSCW, 1277–1286.

This page intentionally left blank

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #7, pp. 47–52, ISBN 978-958-775-080-5

1 INTRODUCTION

SEMAT is an initiative for redefining software engineering by

means of the establishment of a widely accepted kernel of el-

ements and a solid theoretical foundation of proven principles

and best practices from industry, academia, researchers, and

users (OMG, 2012). RUP (Rational Unified Process) has

some project management practices related to PMBOK (Pro-

ject Management Body of Knowledge). Project management

is recognized as one of the most critical areas of the software

development process and it can be represented by using the

SEMAT kernel.

SPEM (Software and Systems Process Engineering Meta-

model) is another proposal for representing methods and

practices, but it exhibits greater complexity in its use com-

pared with the SEMAT kernel. Also, the SEMAT kernel pro-

vides support for monitoring and tracking the project process

by using the "things that we always work with"—called al-

phas—and the "things we always do"—called activity spaces.

In this Chapter, we propose the SEMAT-kernel-based rep-

resentation of one of the best practices of RUP called devel-

oping software iteratively by using PMBOK as the main ref-

erence for project management. This is a contribution to the

standardization of methods, methodologies, and processes

most recognized in the software development within a com-

mon framework to take from every initiative useful elements

according to the need of each project.

To the extent of meeting this goal, in Section 2 the main

concepts associated with the proposal are defined (Project

Management, PMBOK, and RUP, since the SEMAT kernel

elements are presented in the Preface of this proposal). In

section 3 we set out other attempts to solve the challenge of

standardization, stating their strengths and weaknesses. In

Section 4 we show the representation of the practice develop-

ing software iteratively in the Semat kernel. Section 5 con-

tains the conclusions and future work that will continue the

standardization of best practices from different methods.

2 CONCEPTUALIZATION

During the software development process, both management

and technical activities are necessarily carried out (Contreras

et al., 2011). Seeking to provide guidelines for the implemen-

tation of the tasks associated with the project management

and administration, a set of proposals, methodologies, and

methods have emerged.

2.1 Project Management and PMBOK

The PMBOK® Guide identifies a set of good practices,

knowledge, skills, tools, and techniques related to project

management for enhancing the chances of success on several

projects (IEEE Std 1490-2003, 2004; PMI, 2013). The

PMBOK® Guide also defines a common vocabulary, like an

essential element of a professional discipline (PMI, 2013). For

this purpose, this guide has a set of knowledge areas (see fig-

ure 1).

Figure 1. PMBOK Knowledge Areas. Source: Adapted

from (PMI, 2013)

Chapter #7

Toward a standardized representation of RUP best practices of project

management in the SEMAT kernel

María Eugenia González-Pérez
Institución Universitaria Salazar y Herrera, Medellín, Colombia

Carlos Mario Zapata-Jaramillo
Universidad Nacional de Colombia- sede Medellín, Medellín, Colombia

Liliana González-Palacio
Universidad de Medellín, Medellín, Colombia

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #7, pp. 47–52, ISBN 978-958-775-080-5

 48

PMBOK is an essential reference when someone is looking

for the best practices related to project management. Howev-

er, best practices specifically related to the software devel-

opment process can be found in other proposals, such as the

Rational Unified Process (RUP).

2.2 RUP

IBM Rational Unified Process® (RUP®) is a comprehensive

process framework including industry-tested practices for

software and systems delivery and implementation. Also, ef-

fective project management is included in this framework

(Rational, 1998). RUP comprises four phases and nine disci-

plines (see figure 2). Project Management is recognized as

one of the cross-cutting, most critical disciplines of the soft-

ware development.

Figure 2. RUP Structure. Source: Rational (1998)

3 RELATED WORK

Previous to the SEMAT kernel, the Software and Systems

Process Engineering Meta-model (SPEM) was the other ap-

proach for providing a common framework to represent prac-

tices, methods, and software development models. According

to OMG (2008), SPEM "is a process engineering meta-model

as well as conceptual framework, which can provide the nec-

essary concepts for modeling, documenting, presenting, man-

aging, interchanging, and enacting development methods and

processes. An implementation of this meta-model would be

targeted at process engineers, project leads, project and pro-

gram managers who are responsible for maintaining and im-

plementing processes for their development organizations or

individual projects."

SPEM adds additional complexities to the method and

practice representation. Consequently, among the software

industry and the software professionals SPEM recognition

and adoption is still far away. SPEM Specification has

focused on organizations with a separate group of people in

charge of maintaining the processes. Specifically, SPEM tar-

get audience has been focused on process engineers, project

leaders, and project and program managers who are

responsible for maintaining and implementing processes

(OMG, 2008).

Compared with SPEM, the SEMAT kernel exhibit some

similarities in the authoring capabilities provided by the two

specifications, but key differences arise in the method archi-

tecture with respect to support for enactment (Elvesæter et

al., 2013). SPEM exhibits some other disadvantages like the

vague semantics (Schuppenies & Steinhauer, 2004; Shengjun

et al., 2007). SPEM major components are included in Figure

3.

Figure 3. The most important SPEM stereotypes. Source:

Schuppenies & Steinhauer (2004)

According to Elvesæter et al. (2013), three main differen-

tiators between the SEMAT kernel and SPEM are: underpin-

ning values, support for enactment, and ease of learning and

use. While SPEM is more concerned with the processes and

engineers who carry out these processes, the SEMAT kernel

includes all of the events and actors involved in the software

development life cycle by using items such as alphas, activity

spaces, competencies, etc.

4 PROPOSAL

The process to be followed for representing the RUP practic-

es related to project management in the SEMAT kernel is

graphically summarized in Figure 4. The steps of the process

are:

 Step 1: we identify the six best practices of RUP (Rational,

1998).

 Step 2: since we are interested in management practices, a

correlation to PMBOK should be established.

 Step 3: we also need to correlate the practices to the

SEMAT kernel area of concern endeavor.

 Steps 4 and 5: this analysis provides the necessary ele-

ments to develop a table showing the consolidated activities

of the project management discipline in RUP and their work

products, which are paired with the SEMAT kernel alphas. A

graphical representation of alphas and work products is then

provided.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #7, pp. 47–52, ISBN 978-958-775-080-5

 49

 Step 6: Finally, the relationship between the activities of

RUP and the activity spaces in SEMAT is determined, and

the corresponding graphical representation is made.

Figure 4. Process diagram for the SEMAT-kernel-based

representation. Source: The authors

The remainder of this Section shows in more detail the

most important steps in the process.

4.1 Identification the best RUP's practices

RUP authors determined the following six best development

practices (Rational 1998): develop software iteratively, man-

age requirements, use component-based architectures, visual-

ly model software, and control changes to software.

4.2 Mapping RUP best practices to the PMBOK

Only the RUP best practice control changes to software is re-

lated to the PMBOK knowledge area quality management.

The five remaining can be related to integration management.

4.3 Mapping RUP best practices and SEMAT kernel

areas of concern

According to the description of each of the six best practices,

we have determined what SEMAT area of concern can be as-

signed to the respective practice. In Figure 5, the comparative

analysis carried out between the definitions of each of the six

practices and the definitions of each area of interest, allowed

for us to identify the relationship between two of the best

practices in the area of concern endeavor (blue) and the re-

maining four in the area of concern solution (yellow) as fol-

lows:

Figure 5. Six RUP best practices in the SEMAT kernel

notation. Source: The authors

• Area of Interest endeavor:

 Develop software iteratively.

 Control changes to software.

• Area of Interest solution:

 Manage requirements.

 Use component-based architecture.

 Visually model software.

 Verify software Quality.

We selected the practice develop software iteratively to be

represented in this Chapter.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #7, pp. 47–52, ISBN 978-958-775-080-5

 50

4.4 Consolidation activities of the RUP project

management discipline with their work products.

Correlation with the SEMAT-kernel alphas

According to Rational (1998), a process describes who is do-

ing what, how, and when. RUP is represented by using four

primary modeling elements: workers (‘who’), activities

(‘how’), artifacts (‘what’), and workflows (‘when’). The main

RUP activities related to the discipline develop software it-

eratively are depicted in Figure 6. Also, the artifacts associat-

ed with the RUP activities and their descriptions are included

in Table 1.

Figure 6. RUP activity overview of the discipline develop

software iteratively. Source: Rational (1998)

We identified a close relationship of the practice develop

software iteratively and the three alphas belonging to the area

of concern endeavor, as shown in Figure 7.

Figure 7. Relationship between the RUP practice develop

software iteratively and the area of concern endeavor.

Source: The authors

The RUP documentation provides the following artifacts

related to the practice develop software iteratively: business

case, risk list, implementation model, iteration assessment,

project plan, measurement plan, updated project plan, and it-

eration plan.

By analyzing the description of each artifact derived from

the RUP best practice and comparing it with the description

of each alpha, we discovered the relationship of develop soft-

ware iteratively with other SEMAT alphas located in the

three SEMAT areas of concern. Also, we can map the RUP

artifacts to SEMAT work product, as shown below.

Table 1. Artifacts associated with the RUP activities. Source:

Rational (1998)

Activity Artifact Artifact description

Develop

Business

Case

Business

Case

Provides the necessary information from a

business standpoint, to determine whether

or not this project is worth investing in

Identify

Risks

Risk list A sorted list of known, open risks to the

project, sorted in decreasing order of im-

portance, associated with specific mitiga-

tion or contingency actions

Develop

Project

Plan

Project

Plan

Defines the overall schedule for the project

over time: dates for the phases and the as-

sociated major milestones, and dates for

the iterations with their major objective.

Meas-

urement

Plan

Defines the measurement goals, the associ-

ated metrics, and the primitive metrics to

be collected in the project to monitor its

progress

Staff

Project

Updated

Project

Plan

Redefines the overall schedule for the pro-

ject over time: dates for the phases and the

associated major milestones, and dates for

the iterations with their major objective.

Develop

Iteration

Plan

Iteration

Plan

A time-sequence set of activities and task,

assigned to resources, containing task de-

pendencies, for the iteration; a fine-grained

plan.

Execute

Iteration

Plan

Imple-

mentation

Model

Collection of components, and the imple-

mentation subsystems that contain them.

Components include both deliverable com-

ponents, such as executables, and compo-

nents from which the deliverables are pro-

duced, such as source code files.

Revisit

Risk List

Risk List A sorted list of known, open risks to the

project, sorted in decreasing order of im-

portance, associated with specific mitiga-

tion or contingency actions.

Evaluate

the Itera-

tion

Iteration

Assess-

ment

The iteration assessment captures the result

of an iteration, the degree to which the

evaluation criteria were met, and lessons

learned and changes to be done.

Opportunity: the set of circumstances that makes it ap-

propriate to develop or change a software system (Jacobson

et al., 2013). We assigned here the business case and the risk

list, as shown in Figure 8.

Figure 8. Work products of the alpha opportunity.

Source: The authors

Software System: a system made up of software, hard-

ware, and data that provide its primary value by the execution

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #7, pp. 47–52, ISBN 978-958-775-080-5

 51

of the software (OMG, 2012). We assigned here the imple-

mentation model and the iteration assessment, as shown in

Figure 9.

Figure 9. Work products of the alpha software system.

Source: The authors

Way-of-Working: the tailored set of practices and tools

used by a team to guide and support their work (OMG,

2012). We assigned here the project plan, the measurement

plan, the updated project plan, the iteration plan, and the iter-

ation assessment, as shown in Figure 10.

Figure 10. Work products of the alpha way of working.

Source: the authors

4.5 Determination of relationship between the RUP

activities and the SEMAT activity spaces

Once you have fully identified the work products associated

with each alpha, we could proceed to identify the SEMAT

activity spaces in which each RUP activity is associated with-

in the discipline develop software iteratively, as shown below.

Explore Possibilities: explore the possibilities presented by

the creation of a new or improved software system. This in-

cludes the analysis of the opportunity to be addressed and the

identification of the stakeholders (OMG, 2012). We assigned

here the activities develop business case, identify risks, and

revisit risk list, as shown in Figure 11.

Implement the System: Build a system by implementing,

testing and integrating one or more system elements. This in-

cludes bug fixing and unit testing (OMG, 2012). We assigned

here the activity execute iteration plan, as shown in Figure

12.

Test the System: Verify that the system produced meets

the stakeholders’ requirements (OMG, 2012). We assigned

here the activity evaluate the iteration, as shown in Figure

13.

Coordinate Activity: co-ordinate and direct the team work.

This includes all on-going planning and re-planning of the

work, and re-shaping of the team (OMG, 2012). We assigned

here the activities develop project plan, staff project, and de-

velop iteration plan, as shown in Figure 14.

Figure 11. Relationship between the activity space explore

possibilities and the activities of the discipline develop soft-

ware iteratively. Source: the authors

Figure 12. Relationship between the activity space implement

the system and the activities of the discipline develop software

iteratively. Source: the authors

Figure 13. Relationship between the activity space test the

system and the activities of the discipline develop software it-

eratively. Source: the authors

Figure 14. Relationship between the activity space coordinate

and the activities of the discipline develop software iterative-

ly. Source: the authors

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #7, pp. 47–52, ISBN 978-958-775-080-5

 52

5 CONCLUSIONS AND FUTURE WORK

In this chapter we generated a SEMAT-kernel-based repre-

sentation of one of the RUP best practices—named develop

software iteratively—for managing a software project. In this

way we wanted to contribute to the standardization of all the

models and methods used in software engineering by using a

common language.

The practice develop software iteratively only relates to

one alpha of the area of concern endeavor, while the activities

and work products are connected to the three areas of inter-

est. This fact is not counterintuitive, since the project man-

agement discipline is cross-cutting to the whole process and

the selected practice is related to the realization of iterations.

Some future work can be proposed in order to continue

the proposed representation of this Chapter. For example,

considering the fact that none of the six RUP best practices is

related to each other, at least not explicitly, we can propose

carrying out the integration of the remaining five RUP best

practices into the SEMAT kernel. Also, we can combine them

with the best management practices belonging to a different

software development method—e.g., SCRUM. In this way

we could ensure the focus of software development for pro-

jects is not centralized into processes, considering the im-

portance of the people who make the work.

We also intend to promote, by including the SCRUM best

management practices, the importance of considering previ-

ous practices when trying to adopt a new method. In the case

of SCRUM, some previous RUP practices could support the

new activities promoted by SCRUM, even though the com-

panies are moving toward new fashions like the agile meth-

odologies.

A final future work to be proposed is the addition of sev-

eral other elements of the SEMAT kernel for representing

additional information of the RUP practices. For example, the

patterns can be used for representing the roles and phases of

the RUP method, and competencies can be considered for

adding information to the RUP activities.

6 REFERENCES

Contreras, M., Villamizar, L., & Orjuela, A. 2011. Modelo de
integración de las actividades de gestión de la guía del
PMBOK, con las actividades de ingeniería, en proyectos
de desarrollo de software. Revista Avances en Sistemas e
Informática 8(2): 97-106.

Elvesæter, B., Benguria, G., & Ilieva, S. 2013. A Comparison
of the Essence 1.0 and SPEM 2.0 Specifications for Soft-
ware Engineering Methods. PMDE.

IEEE Std 1490-2003. 2004. IEEE Guide Adoption of PMI
Standard a Guide to the Project Management Body of
Knowledge IEEE Std 1490-2003 (Revision of IEEE Std
1490-1998):_1-216.

Jacobson, I., Pan-Wei, N., McMahon, P., Spence, I., & Lid-
man, S. 2013. The Essence of Software Engineering—
Applying the SEMAT Kernel. London: Addison-Wesley.

Johnson, P., Ekstedt, M., & Jacobson, I. 2012. Where's the
Theory for Software Engineering? IEEE Software 29(5):
96-96.

Object Management Group (OMG). 2008. Software Process
Engineering Metamodel (SPEM). Available:
http://www.omg.org/spec/SPEM/2.0/

Object Management Group (OMG). 2012. Essence – Kernel
and Language for Software Engineering Methods (Vol.
ad/2012-11-01): 283).

Project Management Institute (PMI). 2013. A Guide to the
Project Management Body of Knowledge (PMBOK®
Guide) – Fifth Edition. Newtown Square: Project Man-
agement Institute.

Rational. 1998. Rational Unified Process: Best Practices for
Software Development Teams. (TP026B), 21.

Schuppenies, R., & Steinhauer, S. 2004. Software Process
Engineering Metamodel. Hasso-Plattner-Institut.

Shengjun, W., Longfei, J., & Chengzhi, J. 2006. Represent
Software Process Engineering Metamodel in description
logic. In Proceedings of the World Academy of Science,
Engineering and Technology, Vol. 11.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #8, pp. 53–56, ISBN 978-958-775-080-5

1 INTRODUCTION

Software development teams use a set of practices and tools

to guide and support their work. These practices and tools

help integration of team members and support the under-

standing of what should be implemented.

Team management should be done with focus on the de-

livery of software that achieves both the customer needs and

expectations, considering the functional and non-functional

requirements of customer demands. Furthermore, team man-

agement should be aware that software errors may occur due

to software developers.

On whatever occasion that a software developer makes a

mistake in their work, faults are injected into the software ap-

plication. Developer errors can occur at any stage of the

software development life cycle, and can be classified in two

broad categories (Stutzke & Smidts, 2001):

 Errors made during the activities of analysis, design, and

coding.

 Errors made during attempts to remove faults identified

during the activities of verification and validation.

Software development process is a human-labor-intensive

activity, and software developers suffer pressure to be effi-

cient in building the right software without faults. The large

amount of distinct elements in software systems makes the

development of such systems more complex than any other

type of human construction (Weinberg, 2011; Poppendieck &

Poppendieck, 2003; Brooks, 1997).

Humans are essential to the software development process

although the repertory of models and techniques for avoiding

faults being inserted by developers is very limited. There are

several software reliability models (Musa, 2004; Rekab et al.,

2013; Amin et al., 2013; Okamura et al., 2013); nevertheless,

the number of models and techniques to deal with software

developer errors are very limited, and do not reflect the fact

that a single developer error can inject multiple faults into a

software system, as software systems are non-linear systems

(Stutzke & Smidts, 2001; Xion & Li, 2013).

Team managers need to identify the factors of the devel-

opment environment that have influence in developer errors,

and to consider the different parts of the software system to

be developed. Some of these factors are (Stutzke & Smidts,

2001; Rasmussen & Vicente, 1989):

 Lack of resources and tools for the team, which can be

caused by insufficient knowledge, or lack of consideration of

proper preconditions or side effects of a decision.

 Team ability.

 Time pressure under which team are required to work.

 Familiarity of the team with the type of system and busi-

ness rules.

Soft system engineering approach considers people as sys-

tem elements with a holistic view. Such an approach can help

team managers to deal with the factors of development envi-

ronment that influence the developer error because it consid-

ers the people working, their individual interests, objectives,

attitudes, and mutual interactions (Hitchins, 2008; Checkland,

1999).

In this Chapter we consider the Hitchins’ Rigorous Soft

Method (RSM), a soft system engineering approach that al-

lows for the knowledge construction about the development

environment. This knowledge is necessary for identifying the

factors that facilitate the occurrence of developer errors in the

development environments.

The Chapter is organized as follow: in Section 2 we de-

scribe RSM. In Section 3 we discuss the SEMAT
1
 kernel ex-

tension to describe the RSM practices in kernel language, in a

way that team managers can apply the RSM in software de-

1
 The theoretical framework related to SEMAT is com-

pletely described in the Preface of this book.

Chapter #8

RSM as SEMAT Kernel Extension for Reliability

M. J. Simonette & E. Spina

Universida de de São Paulo, São Paulo, Brasil

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #8, pp. 53–56, ISBN 978-958-775-080-5

 54

velopment to deal with developer error; the last section con-

cludes the chapter.

2 SOFT SYSTEMS ENGINEERING

Soft systems engineering uses systems thinking to understand

the nature of a problem, seeking practical experiences and in-

teractions with the problem. It proposes solutions that may

not solve the problem, although it can provide solutions for

improving the problem understanding, and the development

of a solution, which is the best at the moment. According to

Senge (2006), systems thinking is a discipline to see a system

in its totality, a kind of framework to view the interrelation-

ship of system components more than to view the compo-

nents, to view the system patterns of change more than to

view system static images. Hitchins (2008) argues that sys-

tems thinking caught the attention of engineers when they re-

alized that the Cartesian approach—the most successful tech-

nique used by engineering—have difficulties to deal with

systems that include people.

Software development is a human activity, and the soft-

ware development environment is a system in which the hu-

man dimension has a complexity which demands team man-

agers to adapt their practices according to behavior of team

members and environment changes. Soft systems engineering

methods can help team manager in this task, as these methods

deal with a variety of elements, which can be analyzed. Be-

sides, these methods are designed and organized in a way that

is more qualitative than quantitative, and they transform the

information obtained to enable managers to deal with the fac-

tors of the development environment that have influence in

developer errors.

2.1 Soft system engineering methods

Hitchins’ RSM is one of the methods used by soft system en-

gineering. It is based on the General-Purpose Problem Solv-

ing paradigm. Derek Hitchins states that RSM is designed to

address complex problems and issues, and to support the

conception of potentials solutions (Hitchins 2008).

Checkland’s soft systems methodology (SSM) is another

software system engineering method (Checkland 1999). It

promotes the agreement of the multiple problem views and

multiple interests of the people that are involved in a prob-

lematic situation. Besides, it addresses complex issues and

problems related to the presence of people in unstructured—

problematic—situations.

SSM and RSM are context free. Both methods provide

support to the knowledge construction about the problem

domain. They bring information about the issues or problem

into the method, which can generate large amounts of data

and information. Unlike SSM, RSM is rigorous, as it employs

defined tools and processing methods to handle, organize,

and process information. Hitchins (2008) points out that is

the “process methods” of RSM that allows for the transfor-

mation of disordered source data into specific solution infor-

mation.

2.2 Hitchins’ Rigorous Soft Method (RSM)

Rigorous Soft Method addresses problems using hierarchies

of “symptoms” caused by the problem. As a system method,

it addresses whole systems at once, rather than work with

particular aspects of the problem. RSM is suitable for team-

based working, and generates requirements for problem reso-

lution.

RSM has a seven-step process. Each step invokes the us-

age of particular techniques that are chosen so that the output

from one technique forms is required as input by the follow-

ing techniques. This fact moves the process forward. The

seven steps are (Hitchins, 2008):

 Nominate issue and Issue domain—in which the problem

issues are identified and a description of the situation is made.

 Identify issue symptoms and factors—that identifies the

symptoms of the problem, and the factors that make them

significant to be explored.

 Generate implicit systems—each symptom implies the ex-

istence of at least one implicit system in the problem situation.

 Group into containing system—at this step, the implicit

systems are aggregated to form clusters, one cluster for each

symptom, called containing system, which can generate a hi-

erarchy of systems, highlighting issues related to the problem.

 Understanding containing systems, interactions, and imbal-

ances—at this step, the interactions between the containing

systems are evaluated.

 Propose containing systems imbalance resolution—this

step uses the differences between an ideal world, where the

symptoms do not exist, and the real world, to propose socio-

technical solutions to the imbalances identified in the previous

step.

 Verify proposal against original symptoms—at this step,

the system model are tested to see if they eliminate the symp-

toms identified at step two and the imbalance found at step

six.

3 EXTENDING SEMAT KERNEL TO DEAL WITH

DEVELOPER ERRORS

Albeit the things we always work with and the things we al-

ways do of the SEMAT kernel are a small set of essential

things that are universal in software development environ-

ments, they are not concerned with the software developer

errors. The absence of developer errors is not a problem of

the kernel, because the kernel is defined as the essential ele-

ments of software engineering, not as “all elements” a devel-

opment team need to deal with.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #8, pp. 53–56, ISBN 978-958-775-080-5

 55

Developer errors bring risks to the software development

endeavor. Development team managers need to identify the

factors of the development environment that have influence in

developer errors. RSM is a method that can help team man-

agers to have a development environment resilient to devel-

oper errors. According to Hitchins (2008) RSM has tools and

defined processing methods. These features are not clear or

defined in other soft system engineering methods, which are

dependent on the skills and insight of those who use the

methods to find the right tools and processes to be used.

To make use of RSM, team managers need some guide-

lines usable by inexperienced team members, and also pro-

moting a common understanding among team members of

how to conduct the RSM in software development process.

The SEMAT kernel can be scaled to address this challenge by

providing guidance beyond the essential elements provided by

the kernel; this guidance comes in form of what SEMAT re-

fers to as practices.

3.1 RSM Practices

Developer errors are generated both in area of concern en-

deavor of the SEMAT kernel, and in the relationship among

the endeavor alphas and the alphas the other two areas of

concern. Figure 1 shows all the relationships of the alphas be-

longing to endeavor:

Figure 1. Alphas belonging to endeavor and their relationship

with other alphas.

 Work has relationship with requirements, opportunity

and software system.

 Team has relationship with software system and stake-

holders.

 Way of working lacks relationship with any other alphas

than the endeavor ones. However, way of working is an

essential link between team and work, and it is under di-

rect influence of the factors mentioned by Clarke &

O’Connor (2012).

RSM practice can be applied to the area of concern en-

deavor in terms of “thing to work with” (Figure 2) and

“things to do” (Figure 3). Considering the “things to work

with,” RSM practice provides guidance to clarify the envi-

ronment factors to team members and manager. This practice

provides guidance on how to conduct RSM activities, name-

ly:

 Nominate the potential development environment fac-

tors that may have influence in developer errors. This is

made by executing the first four steps of RSM.

 Understand the interactions between the environment

factors that were nominated in first four steps by execut-

ing the steps five and six of RSM. It includes the identi-

fication of the core activities required for developing a

resilient environment by means of the comparison of an

ideal model of environment with the team perception of

the real endeavor environment. These activities are

grouped in Support Action Plan.

 The Support Action Plan developed at the end of RSM

step six is implemented by executing the step seven of

RSM.

 Observe the development environment as a way to iden-

tify the necessity of a new cycle of the RSM to control

or to improve some action in the environment for deal-

ing with the factors that may have influence in developer

errors.

Figure 2. RSM practice: Things to work with

Figure 3. RSM practice: Things to do.

The team guidance in what to do for achieving a particu-

lar state of the way of working is the alpha state checklist

(Hitchins, 2008). The mapping from the way-of-working al-

pha states to the RSM activities that must be part of the

checklist is showed in Figure 4. The mapping indicated in the

figure means that the practice recommends conduct the ac-

tivity “Understand factors and develop Support Action Plan”

(by executing the steps five and six of RSM) to achieve the

state of Foundation Established.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #8, pp. 53–56, ISBN 978-958-775-080-5

 56

Figure 4. Using SSM practice: Mapping way-of-working al-

pha states to activities.

4 CONCLUSION AND FUTURE WORK

Among software quality attributes, reliability is commonly

one of the most important attributes. Reliability quantifies

software faults and failures, which can lead to serious conse-

quences in software systems. Software developer errors have

direct influence in the software system reliability, as on what-

ever occasion that a software developer makes a mistake in

their work, faults are injected into the software.

Developer error may happen independently of the devel-

opment method adopted by the software development team.

RSM practice is a software engineering approach to enable

software development managers to understand development

environment that have influence in developer error, and de-

velop a Support Action Plan to deal with it.

The authors of this paper are conducting researches about

extensions of SEMAT kernel alphas in order to offer an an-

swer that considers the inherent complexity of SSD process,

in which developer error has presence.

5 REFERENCES

Amin, A., Grunske, L. & Colman, A. 2013. An approach to

software reliability prediction based on time series model-

ing. Journal of Systems and Software 86(7): 1923-1932.

Brooks, F.P. 1997. No silver bullet: essences and accidents of

Software Engineering. IEEE Computer 20(4): 10-19.

Checkland, P. 1999. Systems Thinking, Systems Practice: In-

cludes a 30-year Retrospective. Chicheste, New York:

John Wiley & Sons.

Clarke P., O’Connor, R.V. 2012. The situational factors that

affect the software development process: Towards a

comprehensive reference framework. Information and

Software Technology 54(5):433–447.

Hitchins, D.K. 2008. Systems Engineering: A 21st Century

Systems Methodology. Chichester: John Wiley & Sons.

Jacobson, I., Ng, P.W., McMahon, P.W., Spence, I., & Lid-

man, S. 2012. The Essence of Software Engineering: The

SEMAT Kernel. Queue 10 10(10).

Jacobson, I., Ng, P.W., McMahon, P.W., Spence, I., & Lid-

man, S. 2013. The Essence of Software Engineering: Ap-

plying the SEMAT Kernel. New Jersey: Addison-Wesley

Professional.

Musa, J. 2004. Software Reliability Engineering: More Reli-

able Software, Faster, and Cheaper. 2nd ed., Blooming-

ton: Author House, Bloomington.

Okamura, H., Dohi, T., & Osaki, S. 2013. Software reliability

growth models with normal failure time distributions. Re-

liability Engineering & System Safety 116: 135-141.

Poppendieck, M. & Poppendieck, T. 2003. Lean software

development: an agile toolkit. Upper Saddle River, NJ:

Addison-Wesley.

Rasmussen, J., & Vicente, K.J. 1989. Coping with human er-

rors through system design: implications for ecological in-

terface design. International Journal of Man-Machine

Studies 31(5): 517–534.

Rekab, K., Thompson, H. & Wu, W. 2013. A multistage se-

quential test allocation for software reliability estimation.

IEEE Transaction on Reliability 62(2): 424-433.

Senge, P. 2006. The Fifth Discipline: The Art & Practice of

the Learning Organization. New York: Currency Dou-

bleday.

Stutzke, M.C & Smidts C.S. 2001. A stochastic model of

fault introduction and removal during software develop-

ment. IEEE Transactions on Reliability 50(2): 184-193.

Weinberg, G.W. 2011. The psychology of computer pro-

gramming. Silver Anniversary Edition. [Kindle for Mac,

version 1.10.3]. Retrieved form Amazon.com.

Xiong, J., & Li, L. 2013. Nonlinear and Quantitative Soft-

ware Engineering Method Based on Complexity Science.

In Recent advances in Computer Science: Proceedings of

the 17th International Conference on Computers.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #9, pp. 57–63, ISBN 978-958-775-080-5

1 INTRODUCTION

Technological project formulation and execution involves

challenges, risks, and problems. Some of them are controlled

objects and, consequently, study objects in development

methodology formulation (Project Management Institute,

2009). Several existing methodologies are based on work en-

vironments, models and theories for technological develop-

ment projects, especially in the software area (Fulbright,

2013).

Particularly, some technological projects covering soft-

ware and hardware are submitted as trends. This modality

does not guarantee proposal award or approval for project

execution, since no return on investment and effort in project

formulation are supported (Gordillo, 2003). Additionally,

such modality implies some limitations in project scope, total

cost of the proposal, and project development time (Correa,

2003).

Project formulation is a crucial phase for enterprises. At

this phase, achieving clarity and definition of the project is es-

sential, since reliability is reached by projecting costs, invest-

ments, and real profits, the basis for project execution (Pro-

ject Management Institute, 2009). Also, during this stage

organizational resources should be efficiently used, because

contract award is not guaranteed by the formulation phase.

In this Chapter se present a practice for project formula-

tion in a formal way, involving integration and/or develop-

ment of electronic and software solutions. The formal way is

an adaptation of SEMAT-kernel-based practice formulation.

This Chapter is organized as follows: in Section 2 we pre-

sent some background about practices
1
; in Section 3 we pro-

pose the general structure of the HAR’D Snow project for-

1
 The theoretical framework related to SEMAT is com-

pletely described in the Preface of this book.

mulation practice; in Section 4 we define a way to implement

the practice; in Section 5 we discuss conclusions and future

work.

2 PRACTICE BACKGROUND

The method used for practice definition of project formula-

tion was defined by Sánchez Dams (2013). The entire lifecy-

cle is mainly focused on hardware, and some compatibility

with software co-design is provided. Sánchez Dams (2013)

translates project formulation procedures to a kernel, consti-

tuting the practice presented and the subject of this Chapter.

The method is organized under a Work Breakdown Structure

(WBS; Project Management Institute, 2009) and it is based

on a careful observation of enterprises with activities involved

in electronic and software development systems. Additionally,

specific approaches are adopted during research phases.

Data collection is the first phase. Specialized databases

were included, as well as online resources, references materi-

als, books, articles, and magazines as a secondary source of

information. We aim to establish the current state of the art

about formulation of development projects involving hard-

ware and software. Thus, a theoretical base on existing con-

cepts and approaches helping practice formulation by using a

kernel was obtained.

Once the team identified the reference framework with

data collection, an instrument was developed in order to cap-

ture primary data to characterize strategies and best practices

(Sánchez Dams, 2013). The instrument comprises a survey

and an interview, and some research guidelines were provided

(Sampieri et al., 2006), starting from variable and indicator

definition for the measurement process. Also, a technical

evaluation standard stepwise model called CMMI-DEV v1.3

(Chrissis et al., 2011) was used. The survey comprises closed

questions for objectively identifying the current state of com-

panies and comparing results. Instead, interview comprises

open questions for identifying internal entrepreneurial pro-

cesses for project formulation. The whole instrument is a

Chapter #9

SEMAT-kernel-based formulation of the HAR’D Snow project
practice

R. Sánchez-Dams, N. Amaya-Tejera, & A. Jaramillo-Fuenmayor
Universidad de la Costa, Barranquilla, Colombia

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #9, pp. 57–63, ISBN 978-958-775-080-5

 58

comprehensive assessment about second level of CMMI ma-

turity. Also, the instrument addressed all process engineering

areas belonging to CMMI level three. After the design, the in-

strument was reviewed by two peers in order to ensure rele-

vance.

A non-probabilistic sample was selected to implement the

instrument. Enterprises in the sample were engaged with

hardware/software development, commonly performing em-

bedded solutions, automation, control systems, and electron-

ics in general. The designated staff was contacted in each or-

ganization, and we use the instrument in seven enterprises

according to the guidelines established.

Once the information was obtained, we perform a quanti-

tative analysis (closed-question-based survey) and a qualita-

tive analysis (open-question-based interview) for comparing

the findings and the concepts available in the current state of

the art. So, we obtained a particular characterization of the

identified organizations, including proper procedures, prob-

lem areas, solutions, and complementary aspects available in

current state of the art.

Finally, the practice was synthesized by using a heuristic

approach by using brainstorming with the researchers in-

volved in the project. Besides, we added the experience of

several researchers in companies which were involved, but

they were not part of the implementation of the instrument.

By the time of this book, the practice has been successfully

used in the development of projects within the research group

where was conceived.

3 OVERVIEW OF THE HAR’D SNOW PROJECT

FORMULATION PRACTICE

Similarly to the Figure 1 of the Chapter 2 of this book, where

the modern and traditional lifecycles are compared by Huang

and Ng, we propose the lifecycle depicted in Figure 1. This is

an intermediate approach to the other two lifecycles, since

some cost, scope, and time constraints are considered. The

HAR’D snow project formulation practice restricts the scope

by complying with the opportunity presented, setting time and

price. The practice effort is focused on a suitable formulation

of the project, while the organization only employs the strictly

necessary staff and resources.

Figure 1. Proposed practice lifecycle of the formulation of the

HAR’D Snow project practice
.

Concerning this practice, the project requirements are ar-

ticulated and defined for addressing the opportunity, so the

alpha takes the state bounded. However, the requirements are

not refined, so the consistency is not reached. Related to the

alpha software system, the state architecture selected is par-

tially addressed, because we need to propose a project archi-

tecture including hardware, since the hardware price can be

representative in projects, increasing the effort devoted to the

requirements development. Once the project is approved, the

proposed architecture should be adjusted.

Advantageously, the practice developed is lifecycle-

independent, so it is compatible with both modern and tradi-

tional approaches. Compatibility is possible because the con-

ception of the project is divided into two stages: in the first

one—addressed by the practice itself—project scope and cost

are defined; in the second one—related to project develop-

ment—the finer aspects of planning and technical implemen-

tation activities are discussed. In the particular case of the

waterfall process, once approved and funded the project,

from the practice formulation we can completely define the

requirements and make a fine planning. In modern projects,

work products serving as inputs for planning iteration are ob-

tained from the practice.

The project formulation is early applied early in the lifecy-

cle, aiming to the project design. The proposed practice is

oriented towards organizations developing electronic and

computing technology. We aim to generate a global project

development planning for defining milestones, scope, re-

sources, time, and costs. Some criteria for a suitable formula-

tion from the developer perspective are defined as (Sánchez

Dams, 2013): (i) compliance with the reference terms; (ii)

generations of benefits provided to the developer from de-

sign; and (iii) efficiency in resource usage. In addition, the

formulation is considered successful if approved or funded.

Under the restrictions described to formulate the project,

the developer needs to understand the domain of the problem

and the opportunity. From the area of concern customer, the

requirements are set forth and the purpose is identified in fa-

vor of defining the scope of the software system. Developers

should analyze the software system to conceptualize the solu-

tion and the architecture. We also need to define the project

endeavor, resources, and costs. A project overview is also

desirable including general planning, milestones, and software

system releases. In this way, the project formulation practice

addresses the next advance in the kernel alphas.

The six alphas involved are depicted in Figure 2. The al-

pha stakeholders is required to be recognized and represent-

ed. Opportunity advances to solution needed, and depending

on the formulation conditions, to value established (the state

in dotted line). Requirements advance two states without

reaching the state coherent, because the description of the re-

quirements is postponed until the project execution. In soft-

ware system, the state architecture selected is reached. Final-

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #9, pp. 57–63, ISBN 978-958-775-080-5

 59

ly, work and team have reached, respectively, the states initi-

ated and seeded. The alpha way of working is not addressed

by the practice, because its states are reached once the project

is approved.

Opportunity Requirements System TeamWorkStakeholders

Seeded

Initiated

Prepared

Bounded

Conceived

Architecture
selected

Solution
Needed

Value
Established

Identified

Represented

Recognized

Project
formulated

Develop
software and

operating
system

Customer Solution Endeavor

Milestone:
Decision to

finance

Figure 2. Global planning board: alpha progress to milestone

project formulated.

Project formulation practice allows for identifying the de-

fined elements in the context of the SEMAT kernel: alphas

and sub-alphas involved, work products bringing evidence to

the progress in the alpha states, and the roles and activities

linked to the product development.

The Alphas directly related to the practice are: require-

ments, software system, and work. Figure 3 depicts the prac-

tice structure.

Figure 3. Outline of the practice: HAR’D Snow project for-

mulation.

Sub-alpha requirements item is added to the alpha re-

quirements as defined in the standard SEMAT kernel (Sub-

mitters, 2014). Such sub-alpha represents the advance in the

state of a single requirement. The work product proposed ar-

chitecture is assigned to alpha software system. Finally, we

propose a work product for organizing all the formulation

and we assign it to the alpha work.

The sub-alpha reaches the first state, and enters a second

state called estimated. The proposed architecture is an artifact

of the analysis result suggesting a general solution at the level

of analysis, defining the architectural elements of the global

solution. The estimation table is a work product developers

make as evolving the practice. Initially, the estimation table is

the container of statements belonging to requirement items,

but it is the device proposed to define the whole project for-

mulation.

We define some activities and competencies (Submitters,

2014) related to the HAR’D Snow project formulation and

we classify them into areas of concern, as depicted in Figure

4.

So
lu

ti
o

n

C
u

st
o

m
er

En
d

ea
vo

r
So

lu
ti

o
n

Shape
the System

Understand
Stakeholder Needs

Prepare to do
the Work

Understand the
Requirements

Analysis Development

En
d

ea
vo

r
C

u
st

o
m

er

Management

1

1 2

3

4

Figure 4. Activities and competencies of the HAR’D Snow

project formulation.

The proposed activities for practice are listed below:

1) Prioritize requirements items. Categorize the relative

priority of requirements items in terms of the delivering

value to the customer and the importance to the project.

2) Propose architecture. Define the technical path to take

on the project.

3) Estimate project effort. Calculate the effort required for

each requirement item.

4) Estimate scope, time, and cost. Quantify the total scope

of the project, considering time, cost, and utility.

The SEMAT kernel (Submitters, 2014) includes a set of

competencies for development, which are established by abil-

ity, essential skills, and levels of apprehension. Practice makes

use of the following competencies: analysis, development,

and management. Competencies are proposed from the per-

spective of the developer organization, so the stakeholders

should be coordinated by the customer.

4 IMPLEMENTATION OF THE HAR’D SNOW

PROJECT FORMULATION PRACTICE

In this section we explain the usage of the practice. We use

activities as guides to describe how the alpha states are

reached for completing the entire formulation. As the

SEMAT kernel promotes, we use the “things we always do,”

the “things we always work with,” and the roles who partici-

pate.

4.1 Requirement item

The sub-alpha requirements item is used as an artifact repre-

senting progress in the states of a single requirement. The

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #9, pp. 57–63, ISBN 978-958-775-080-5

 60

state identified is not addressed in the project formulation

practice, so another practice should address the accomplish-

ment of this state. We added the state estimated, increasing

the checklist with the following criteria: globally prioritized,

definite endeavor, proposed resources, and assigned and es-

timated cost. The remaining statements are outside the scope

of this practice and they are: described, implemented, and

verified.

Requirements item

Identified

Described

Implemented

Verified

Estimated

A condition or capacity needed by a
stakeholder to solve a problem or achieve
a goal

• Good requirements item is clear and
achievable

• Good requirements item is described
verifiably

• Good requirements item not specify a
solution

• System elements involved in the
implementation of a good
requirements item are known

Figure 5. Card of sub-alpha requirements item.

4.2 Checklist of the alpha state cards

At the beginning of a project, the seeded team is not recog-

nizing or fully understanding the opportunity. Also, stake-

holders are unable to express the opportunity in terms of re-

quirements limiting the total project effort. For the sake of

addressing these challenges, we need to invest some effort in

the initial stage of the requirements elicitation and definition

prior to estimate the project. In this practice, the mechanism

for identifying requirements is freely chosen. Due to resource

constraints established to develop the project, the state de-

scribed is not reached. The practice only has brief descrip-

tions of the requirements items, unless more detail is needed

for any item. So, time spent in defining requirements items is

postponed to the state estimated. Therefore, developer mem-

bers can understand the requirements so that everyone can

agree on the nature of the software system to be built.

Requirement

item

Identified

1/5

Particular condition or capacity that the
software system deals was identified

• Briefly listed
• Clear origin
• Value is clear

Requirement

item

Estimated

2/5

Impact of the Item was identified in the
project

• Prioritized globally
• Defined effort
• Proposed and allocated resources
• Estimated cost

Figure 6. Cards of states of requirements items, used in prac-

tice.

4.3 Estimation table

Requirements items are organized and estimated in the esti-

mation table, as shown in Table 1. Requirements items are

prioritized, and values indicating difficulty, extension, and

complexity are provided. Indicators are used to calculate the

effort, the hours, and the cost.

Estimation table

Requeriments item

Requeriments item 1 5 3 4 1,5 18 122 $ zzzz

Requeriments item 2 5 3 2 1 6 41 $ zzzz

Requeriments item 3 4 5 4 1,2 24 163 $ zzzz

Requeriments item X 3 5 2 1,1 11 75 $ zzzz

Requeriments item L 2 2 2 1,3 5,2 35 $ zzzz

Requeriments item M 1 1 2 2 4 27 $ zzzz

Requeriments item Z 1 3 4 1,3 15,6 106 $ zzzz

Total 83,8 568

Averages 12 81

Hours Cost

$ YYYY

Priority Difficulty Extension Complexity Effort

Table 1. Estimation table

4.4 Practice activities

In Figure 7, the contribution of activities for advancing the

alpha states directly involved in practice is shown. Some

guidelines of the practice share all of the activities, described

as follows. Each activity should be developed at least by two

people, including analyst and developer roles. The number of

participants in the developer organization should be limited to

the lower possible. We recommend two-to-three people, with

the possibility of including specific technical roles, according

to the necessity and difficulty of the project. In the last guide-

line is established that each activity has steps should be per-

formed in sequence, but not necessarily a step immediately af-

ter the other.

Estimation can be calculated with the help of a moderator

during group sessions. Consensus can be reached by using

several techniques like planning poker.

Conceived

Bounded

Architecture

selected

Seeded

Prioritize requirements

items

Suggest

architecture

Estimating scope, time

and cost

Estimating

project effort

{
}

{

Initiated

Prepared

Estimating project

effort

Estimating scope, time

and cost

}

Requirements System

Work

Team

Figure 7. Contribution of the project development activities

to the states of the alphas.

4.5 Prioritize requirements items

This activity demands the opportunity identified and stake-

holders recognized and represented. We aim to develop a

shared understanding of the product among developers and

stakeholders. This activity is divided into three stages: prepa-

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #9, pp. 57–63, ISBN 978-958-775-080-5

 61

ration, meeting with stakeholders, and adjustments. The re-

quirements are organized and priority is assigned.

In pursuance of this activity, the requirements should be

necessarily conceived prior to the developer group meeting.

At this meeting, each requirements item is reviewed for iden-

tifying short phrases. Besides, items are placed in any order in

the estimation table. Meetings with the representatives of

stakeholders are scheduled, either at the beginning or the end

of the workday. The stakeholder meeting is limited to two

hours of continuous and uninterrupted work. The moderator

leads the meeting, and the rest of the group is responsible for

updating the estimation table and taking notes. The meeting

begins with an explanation of the technique, as follows. An

item is chosen, and priority is assigned. Requirements items

are prioritized by using a 1-to-5 scale in the table, being 5 the

highest priority value. The moderator asks explanation of the

rating given to each item, since he/she should assign the pri-

oritization uniformly, and avoiding situations like the choice

of most high-priority requirements. Finally, once the stake-

holder meeting is completed, the developer group will meet

with the proposed architecture in mind for adjusting the prior-

ity set. Architectural aspects are important in the prioritiza-

tion because they establish technical support to help to devel-

op other requirements items, and thus establish the order of

priority.

4.6 Propose architecture

The architecture—in the context of the formulation—helps to

estimate the requirements item and adjust its priority. The ar-

chitecture also determines the hardware should be paid for,

leaving details of their final selection for execution. This ac-

tivity is interrelated to the other, as the developer group in-

creases their knowledge while the proposed solution is for-

mulated. This activity is not enough to fully understand all the

checklist of the state selected architecture. However, an initial

architecture is proposed. The architecture will evolve once

the project is approved and development is started, subject to

changes in the hardware and software features.

The architecture is the set of elements for defining the so-

lution and the structure, e.g., programming languages, com-

puters, platforms, logical processing of data, and hardware

and software functionality. The developer group is free to

choose the strategies they will use. Architecture should con-

ceptualize the solution in large functional blocks, setting its

configuration and organization. Some examples are the block

diagrams for hardware and the use cases and the user stories

for software (Jacobson et al., 2011).

Every project involves risks, so from project formulation

we should identify and define how to mitigate risks during

development. By identifying such risks, the proposed archi-

tecture is analyzed and the estimation activity is enriched. The

proposed architecture also limits the tools to use in the devel-

opment and affects the effort estimation. The selected basic

hardware and the tools should facilitate the work, affect the

estimation of the difficulty and extent of the development on

each requirements item. Examples of aspects to consider are

learning curves and previous experience of the group.

4.7 Estimate Project effort

The effort is an estimated investment of resources needed to

satisfy a measuring related to a requirements item. This

measure has no units and is relative to the other items of the

project, which involves difficulty, extension, and complexity.

The difficulty relates to the appreciation the development

team has on how easy or problematic is the estimated re-

quirements item. This can be chosen based on previous expe-

rience, familiarity of the team members with an item. The dif-

ficulty is linked to the identified risks or inconveniences that

may result in the item. Likewise, difficulty degree rises with a

growing number of disadvantages or risks. Extension refers

to how long is the solution implementation, once the way to

do it is understood. When more time is required, then the in-

dicator is increased. The last aspect of the effort is complexi-

ty, which is an iteration measurement of one requirements

item compared to others. High grades of dependence imply

high complexity.

Difficulty and extension are rated between 1 and 5. How-

ever, complexity is rated in a continuous range between 1 and

2 (e.g., 1, 1.5, 2, 1.3, etc.). Conducing to make these esti-

mates, a two-hour session is performed in similar conditions

to the activity prioritize requirements items. The stakeholder

participation is optional depending on the terms of the oppor-

tunity, the way of working of the developer organization, and

the relationships with the customer. The estimation is done by

a consensus discussion to choose the score or alternatively

using the planning poker technique. Once estimates of these

indicators are made, we can determine the effort required for

each item, calculated as the product between extension, com-

plexity, and difficulty indicators. As a result, the stress in-

creases geometrically with increasing some aspect involved.

4.8 Estimate range, time, and costs

Understanding of this activity estimation is explained from a

conceptual perspective. Computing details are available in

spreadsheet templates, beneficial to ease the practice imple-

mentation.

4.9 Estimate simplified description

For the sake of simplification, we can assume the develop-

ment team has enough experience in estimating effort and

work hours, and the approached project has low risk, because

they have previously executed similar projects. So, the team

has no need to divide the work for each item of the project.

The development group meets in a work session as men-

tioned above. The main difference with previous meetings de-

scribed is the participation of all available, involved in the

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #9, pp. 57–63, ISBN 978-958-775-080-5

 62

project staff from the developer group. The moderator with

the working group, according to his/her experience chooses a

few requirements items (e.g., 1-3) as a reference. The criteri-

on of choice is familiarity with its implementation. The refer-

ence requirements item is marked in the estimation chart.

Then, the estimated man-hour dedication to complete each

reference requirements item is calculated. Next, a cross-

multiplication is applied to estimate other requirements item,

based on the pattern set.

After that, we can estimate the gross cost of the project.

The estimation is based on workdays per week, for example,

five days on and two off. The times in Table 2 are estimated

at 100% productivity of a business day, but developers have

some rest to drink water, read emails, and meet with each

other, among other things. For example, in an 8-hour labor

day, labor productivity is almost 75%. Consequently, we can

assume only 6 effective hours per labor project day. In addi-

tion, the average salaries of people involved in the project

should include all legal aspects of social benefits and services.

Also, the total value of the staff should be added to the cost

of purchasing equipment and infrastructure, resulting from

the proposed architecture, and to the cost of additional re-

sources such as transport and subsistence. All of these addi-

tional costs are released in the calculation procedure.

Estimation table

Requeriments item

Requeriments item 1 5 3 4 1,5 18 122

Requeriments item 2 5 3 2 1 6 41

Requeriments item 3 4 5 4 1,2 24 163

Requeriments item X 3 5 2 1,1 11 75

Requeriments item L 2 2 2 1,3 5,2 35

Requeriments item M 1 1 2 2 4 27

Requeriments item Z 1 3 4 1,3 15,6 106

Pattern average estimate 14,5 98,3

Total 98,3 666

Averages 12 83

Hours Cost

$ YYY

Priority Difficulty Extension Complexity Effort

Table 2. Man-hour dedication estimation.

In terms of scope, according to the available time and cost

limits established for the project, all the requirements items

needed to deal with or solve the problem are included. The

expected project scenario comprises such items. Then, devel-

opers consensually established two scenarios—pessimistic

and optimistic—based on a success rate lower than expected.

For example if the expected scenario reaches the require-

ments item "k" with 1000 endeavor hours, and if the worst

scenario is set to 80% can only get to the requirements item,

"i" equivalent to 800 work hours. The project scope is de-

fined between the expected and the pessimistic scenario, but

the costs are estimated with the best scenario, as depicted in

Table 3.

After obtaining the gross cost, we can find the final price

of the project. This is an administrative and financial aspect, a

non-technical issue, so freedom is given in the calculation

method. Project price depends on the internal policies of the

developer organization such as profit margins, infrastructure

maintenance, and prestige, among others. According to this

fact, the organization charges an additional percentage on the

project cost. This also includes an assessment of the organiza-

tional infrastructure that holds the project, such as secretaries

and support staff, space, accounting departments, go shop-

ping, etc.

Estimation table

Requeriments item

Requeriments item 1 5 18 122 $ zzzz

Requeriments item 2 5 6 41 $ zzzz

Requeriments item 3 4 24 163 $ zzzz Pessimistic scenario

Requeriments item X 3 11 75 $ zzzz

Requeriments item L 2 5,2 35 $ zzzz Expected scenario

Requeriments item M 1 4 27 $ zzzz

Requeriments item Z 1 15,6 106 $ zzzz Optimistic scenario

Pattern average estimate 14,5 98,3

Total 98,3 666

Averages 12 83

Hours Cost

$ YYYY

Priority Effort

Table 3. Estimation scenarios: pessimistic, expected and op-

timistic.

4.10 Plan globally

This is optional activity to the practice, as depicted in Figure

8. The planning starts from the activity of prioritize require-

ments items with the premise of implementing the first thing

delivering greater value to stakeholders, in pursue of ensuring

compliance range. Despite this, with cut development in the

worst case scenario implementation to know the opportunity

is planned. The project opportunity is limited to the terms of

reference. By defining the range, we are looking forward to

adjust the level, depth, and ease of use solution. The defined

range minimally complies with the proposal opportunity, but

still achievable with the resources, cost, and time defined.

Global planning table

Work
Global
planning

Coordinate Activity

Figure 8. Optional aspects of the practice

The overall project planning sets important milestones in

the project, and the states of progress of the alphas. A miles-

tone is defined as a point of interest in the project, which pro-

vides a significant advance in the proposed solution, estab-

lished by stakeholders and developers. This approach does

not require a detailed plan of the entire project, but it sets an

agenda and a plan of release indicating the moment of partial

deliveries of the solution. Jacobson et al. (2013) recommend

the usage of generic milestones—skinny system available and

usable system available—but the developer group can add

other relevant ones. These milestones determine the lifecycle

and structure the global project planning. According to the

needs of the organization we can make the final planning un-

der either the traditional waterfall (e.g., by using a Gantt dia-

gram; Clark, 2012) or the iterative approach. Well-established

milestones serve as control points for the SEMAT kernel al-

phas. Thus, a balanced development for guiding the team en-

deavor in the implementation of the project is guaranteed. For

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #9, pp. 57–63, ISBN 978-958-775-080-5

 63

this purpose, a set of states of the alphas to be achieved in

each release are chosen. Finally, the planning is captured in

the work product global planning board, as shown earlier in

Figure 2. Jacobson et al. (2013), an additional help that uses

cards statements is provided.

5 CONCLUSIONS

In this Chapter, we formulated the HAR’D snow project

practice. Formulating a practice by using the SEMAT kernel

made possible to explain the structured technique, concentrat-

ing on the relevant aspects of project formulation. We used

the principle of separation of concerns belonging to the

SEMAT kernel in order to formulate the practice. In this

way, we could integrate different styles of organizational

work. For example, the practice can be used in conjunction

with iterative development methods, waterfall approach, or

combined with practical use cases or feature-based require-

ments elicitation. We also estimated prioritized requirements

items in terms of difficulty, extension, and complexity. Esti-

mation was performed for effort, dedication, and cost.

The practice has been applied successfully in the research

group GIACUC. Within the group the practice usage has fa-

cilitated the development of projects, raising the indicator of

funded projects. Project implementation has also benefited,

nearby to estimates being executed within the expected range

and the pessimistic scenario. The future work can be devoted

to formulate other techniques used by the research group un-

der the SEMAT kernel approach to practices. We can also

quantify the benefits of implementing the practice presented,

establishing a procedure for verification of future practices

formulated by the group. Finally, we identified the need for

establishing a mechanism to share best practices with the aca-

demic community and industry, defined by SEMAT cards and

related documentation.

6 ACKNOWLEDGEMENTS

We acknowledge the contributions of Carlos Mario Zapata

Jaramillo—Chairman of The SEMAT Latin American Chap-

ter—and Heyder Páez Logreira to this work.

7 REFERENCES

Amaro Calderón, S. D., & Valverde Rebaza, J. C. (2007).

Metodologías Ágiles.
Chrissis, M. B., Konrad, M., & Shrum, S. (2011). CMMI for

Development: Guidelines for Process Integration and
Product Improvement ; [CMMI-DEV, Version 1.3]. Ad-
dison Wesley Professional

Clark, W. 2012. The Gantt Chart: A Working Tool of Man-
agement. Nabu Press.

Correa, I. 2003. Manual de licitaciones públicas. Naciones
Unidas, CEPAL, ILPES.

Fulbright, R. 2013. Incorporating Innovation into Iterative
Software Development Using the Inventive Problem Solv-
ing Methodology. International Journal of Innovation
Science 5(4): 203–212.

Gordillo, A. A. 2003. Tratado de derecho administrativo:
Parte general. Fundación de Derecho Administrativo.

Jacobson, I., Ng, P.-W., McMahon, P. E., Spence, I., & Lid-
man, S. 2013. The essence of software Engineering: ap-
plying the SEMAT kernel. Addison-Wesley.

Jacobson, I., Spence, I., & Bittner, K. 2011. USE-CASE 2.0
The Guide to Succeeding with Use Cases. Ivar Jacobson
International SA.

Project Management Institute. 2009. Guia De Los Funda-
mentos Para La Direccion De Proyectos /A Guide to the
Project Management Body of Knowledge (PMBOK
Guide): Official Spanish Translation (4a ed.). Project
Management Inst.

Sánchez Dams, R. D. 2013. Metodología ágil estandarizada
para el desarrollo o ejecución de proyectos de sistemas
embebidos. M.Sc. Thesis. Universidad del Norte, Barran-
quilla, Colombia.

Submitters, O. M. G. 2014. Essence–Kernel and Language
for Software Engineering Methods. Beta 2. Available
http://www.omg.org/cgi-bin/doc?ptc/2014-02-26

This page intentionally left blank

Part III: Teaching

For me, the first challenge for computing science is to discover how to maintain order in a

finite, but very large, discrete universe that is intricately intertwined. And a second, but not

less important challenge is how to mould what you have achieved in solving the first

problem, into a teachable discipline: it does not suffice to hone your own intellect (that will

join you in your grave), you must teach others how to hone theirs. The more you

concentrate on these two challenges, the clearer you will see that they are only two sides of

the same coin: teaching yourself is discovering what is teachable.

— Edsger W. Dijkstra (My hopes of computing science, EWD 709, 1979)

This page intentionally left blank

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #10, pp. 67–75, ISBN 978-958-775-080-5

1 INTRODUCTION

1.1 Motivation

Software Engineering has evolved over the last few years.

The description of its foundations was improved in SWEBOK

(IEEE, 2014), the models (CMMI, 2010), and standards

(ISO/IEC 29110, 2011) has been updated, and the Agile

Manifesto has made practices more flexible (Agile Alliance,

2001).

In addition, the Software Engineering Method and Theory

initiative (SEMAT 2014) called for a proposal to develop a

new OMG (Object Management Group) standard that defines

the kernel of basic concepts that should be addressed when

developing software systems. As a result of the call for ac-

tion, the ESSENCE proposal, directed by Ivar Jacobson (Ja-

cobson et al., 2013), emerged. ESSENCE incorporated

KUALI-BEH, which is a Mexican proposal.

Teaching Software Engineering to the new generations

should evolve addressing these changes as quickly as possi-

ble. For the past 12 years the authors have taught Software

Engineering to students at the undergraduate level by using

the educational proposal of TSP (Humphrey, 1999), Unified

Process (Jacobson et al., 1999), and UML (Rumbaugh et al.,

1998).

In 2013 the authors used KUALI-BEH for reviewing the

Software Engineering course. They expressed a method and

practices for maintaining the essentials of traditional process

and including agile practices primarily based on SCRUM

(Schwaber, 2011) and KANBAN (Anderson, 2010).

The new Software Engineering for Beginners course

teaches how to understand and experiment a set of social,

managerial and development practices, working in teams in a

software project. This new proposal has proved to be suc-

cessful with two generations of students. The success was re-

flected in an increased student involvement in the project, a

better team collaboration and an improvement of the quality

of software systems delivered at the end of the course. These

results were compared to the performance of students in gen-

erations preceding the update.

One of the SEMAT
1
 initiatives is to promote the use of

ESSENCE (Jacobson et al., 2013) for educational purposes.

With this in mind, an interest has emerged to analyze which

ESSENCE kernel elements are covered within the Software

Engineering for Beginners course. The objective is to identi-

fy the alphas and their states, activity spaces and competen-

cies covered by the Software Engineering for Beginners

course. In other words, we use the ESSENCE kernel to as-

sess the scope of our educational proposal.

Our hypothesis is that even though Software Engineering

for Beginners course has learning limitations, it allows for

converting all alphas (but not all their states), activity spaces,

and several competencies until the level 2 (Applies).

In Section 2 we shortly describe the KUALI-BEH exten-

sion to the alpha way of working, which is used for the course

method and practices definition. In Section 3 we describe the

Software Engineering for Beginners course, including pre-

conditions, method, and work guidelines. In Section 4 we use

the ESSENCE kernel in order to identify the scope of Soft-

ware Engineering for Beginners course. The coverage of al-

phas and alpha states, activities spaces, and competencies is

analyzed. In Section 5 we discuss the findings of the previous

section. Finally, in Section 6 we present the final conclusions.

2 KUALI-BEH MAIN CONCEPTS

KUALI-BEH (KUALI: Nahuatl word meaning good, fine or

appropriate, BEH: Mayan word meaning way, course or

path) is an extension to the ESSENCE kernel developed by a

group from the Universidad Nacional Autónoma de México

1
 The theoretical framework related to SEMAT is completely

described in the Preface of this book.

Chapter #10

Identifying the scope of Software Engineering for Beginners course
using ESSENCE

G. Ibargüengoitia & H. Oktaba
Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #10, pp. 67–75, ISBN 978-958-775-080-5

 68

(UNAM). The KUALI-BEH extension provides four addi-

tional Alphas to allow teams the expression of their way of

working and the progress of their work in software projects.

For the purpose of this Chapter we will use only Method and

Practice Authoring alphas as sub-ordinate alphas of way of

working.

According to the KUALI-BEH, “The Practice Authoring

Alpha allows the practitioners to express work units as prac-

tices. The Method Authoring Alpha can compose these prac-

tices as methods. Practice and Method Authoring Alphas help

to articulate explicitly the practitioners’ Way of Working”

(Jacobson et al., 2013).

The definitions of the Practice and Method Authoring Al-

phas and its corresponding states are the following (Jacobson

et al., 2013):

 Practice Authoring: It is the defined work guidance, with a

specific objective, that advises how to produce a result

originated from an entry. The guide provides a systemat-

ic and repeatable set of activities focused on the

achievement of the practice objective and result. The

completion criteria associated with the result are used to

determine if the objective is achieved. Particular compe-

tences are required to perform the practice guide activi-

ties, which can be carried out optionally using tools. In

order to evaluate the practice performance and the objec-

tive achievements, selected measures can be associated

to it. Measures are estimated and collected during the

practice execution. The Practice Authoring states are:

Identified, Expressed, Agreed, In Use, In Optimization

and Consolidated.

 Method Authoring: A method is an articulation of a coher-

ent, consistent and complete set of practices, with a spe-

cific purpose that fulfills the stakeholder needs under

specific conditions. The Method Authoring states are:

Identified, Integrated, Well Formed, In Use, In Optimi-

zation and Consolidated.

For details of Practice and Method Authoring Alphas see

the ESSENCE Annex B (Jacobson et al., 2013).

3 SOFTWARE ENGINEERING FOR BEGINNERS

COURSE DESCRIPTION

3.1 Course description

The purpose of the undergraduate course is to introduce stu-

dents to software engineering practices balancing the use of

disciplined and agile methods (Boehm et al., 2004). The cen-

tral focus of this course is to teach by doing. The students

will learn software engineering by doing teamwork and by

developing a software system, which should be functional at

the end of the course.

The authors believe that the most important thing for a

first course of software engineering is to teach software de-

velopment, teamwork, and project management practices.

The exposure of students for dealing with customers is post-

poned for a later course. For this reason, at the beginning of

the course the professors provide the students with a State-

ment of Work, which includes the objective, scope and fea-

tures of software system to be developed.

3.2 Course preconditions

Course preconditions are:

 Students have knowledge about programming, data

structures, algorithms and databases.

 A professor and two assistants are assigned to a group

of about 25 students.

 The initial method for software development is defined

in order to guide the way of working of the students.

 The course duration is 16 weeks including 3 hours of

theory and 4 hours of practice per week.

 The course script, including the week schedule of activ-

ities, is defined.

 A Statement of Work (ISO/IEC 29110, 2011) including

the description of software system to be developed by

each team during the course is defined.

 The type of software system to be developed is a web

application.

 The architectural pattern used by students is the Model

View Controller (MVC; Buschmann et al., 1996).

3.3 Course method

The method of the Software Engineering for Beginners

course, called Initial Method for Software Development, is a

blend of social, management and development practices re-

quired by teams for developing a software system.

Professors used KUALI-BEH Practice and Method Au-

thoring Alphas for describing the content of the Initial Meth-

od for Software Development. First, social, management and

development practices were identified, based on teaching ex-

perience and by using a combination of TSP (Humphrey,

1999), Unified Process (Jacobson et al., 1999) enriched with

Agile and ISO/IEC 29110 Basic Profile (ISO/IEC 29110,

2011) proposals. The practices were agreed on by the profes-

sors and expressed using the KUALI-BEH practice template.

Once the individual practices were selected, expressed and

agreed, they were integrated into the method, using the cor-

responding template.

The objectives of the practices, their entries, and results

were revised and adjusted for accomplishing the coherency,

consistency, and completeness properties of the method. The

Well-Formed state of the Method Authoring Alpha and the

Agreed state of the Practice Authoring Alpha were reached.

The Initial Method for Software Development was ready to

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #10, pp. 67–75, ISBN 978-958-775-080-5

 69

put it In Use state to guide the students in their Way of

Working during the Software Engineering for Beginners

course.

The Initial Method for Software Development purpose is:

 Introducing students in Software Engineering discipline

and agile practices.

The Method entries are:

 Students have enough programming knowledge for de-

veloping a software system.

 A Statement of Work for the software system is de-

fined.

 A Course Script is defined.

The Method expected results are:

 Students have learned and performed software engi-

neering basic practices.

 Student teams developed the functional software sys-

tems.

The Method practices are:

Social practices:

 (SP1) Forming the Team and Putting the team name

and logo. Each team member selects one of the fol-

lowing roles: Team Responsible, who is accountable

for encouraging team members to do their work,

helping to solve issues and risks, holding up the

teamwork, and interacting with the professor; Quality

Responsible, who helps to enforce standards and

product integrity; Technical Responsible is in charge

of all technical support in development decisions;

Collaboration Responsible, who helps to maintain

communication and agreements of the team by means

of collaborative tools. Additionally, every team mem-

ber plays the role of Developer, taking care of at least

one use case for identification, description, coding,

unit testing and integration.

 (SP2) Defining Team Communication. This practice is

based on SCRUM Daily Meeting (Schwaber, 2011)

and it includes the work item card states updating on

the virtual card wall (Anderson, 2010).

 (SP3) Creating a Common Repository. This practice is

based on activities proposed in ISO/IEC 29110

(2011) and consists of setting up the team documents

and code repository.

 (SP4) Iteration Retrospective. This practice is based on

the SCRUM Retrospective.

Management Practices:

 (MP1) Project Planning. A plan is created according to

activities (ISO/IEC 29110, 2011) and the Course

Script. Also, teams create the General Use Case Dia-

gram for the Statement of Work.

 (MP2) Iteration Planning. The use cases for the itera-

tion are selected, at least one use case for each team

member is assigned, and the virtual card wall with ini-

tial work items cards is created.

 (MP3) Executing the Plan. The planned work items are

executed and the work item card states on the virtual

card wall are updated.

 (MP4) Assessing and Controlling the Iteration. The

progress of the work is assessed by reviewing the

states of the work items cards on the virtual card wall.

Eventually, new work item cards are defined to attend

issues and risks.

 (MP5) Closing the Iteration. The partial software sys-

tem and the documentation are delivered by the teams

in order to be evaluated by the professors.

 (MP6) Closing the Project. The final software system

and the documentation are delivered by the teams for

final course evaluation.

Development Practices:

 (SDP1) Software Requirements. The iteration use

case diagram is built. Each team member selects

one or more use cases, details them, creates the

prototype of the user interface and provides test

cases. All the team members define non-functional

requirements for the software system.

 (SDP2) Software Design. The software system is a

web application and the professors impose the us-

age of MVC architectural pattern. The students de-

scribe the architecture with UML package and de-

ployment diagram and define the implementation

environment. Each student builds class and se-

quence diagrams for each use case. The state ma-

chine diagram for user interface navigation and the

database Entity-Relation diagram are designed by

the team.

 (SDP3) Software Construction. Each team member

codes her/his use case classes and performs unit

tests with the test cases defined in requirements.

 (SDP4) Software Integration and Testing. The

Technical Responsible supports the team for inte-

grating all use cases in a software system and test-

ing.

 (SDP5) Software Delivery. The software system and

documentation are delivered to the professors in

order to be evaluated.

Figure 1 shows the general structure of the Initial Method

for Software Development.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #10, pp. 67–75, ISBN 978-958-775-080-5

 70

Figure 1. Initial Method for Software Development purpose

and practices.

3.4 Course work guidelines

The course work guidelines are:

 The professor initially lectures the theoretical software

engineering classes and explains the concepts by using

the method practices. The practices specify the activi-

ties to be performed. Professor requests students to

carry out the practices and deliver documents or code,

which prove that these activities were performed

properly and on time.

 The assistants support students on the generation of

practice documents and on the technical aspects in-

volved in the software system development.

A Course Guideline contains the general course plan:

 Weeks 1, 2: software engineering introduction, course

Method presentation, and the execution of the social

practices: (SP1) Forming the Team, (SP2) Defining

Team Communication and (SP3) Creating a Common

Repository.

 Week3: Management Practices: (MP1) Project Plan-

ning, (MP2) Iteration Planning, creation of the virtual

card wall corresponding to (MP3) Executing the Plan.

 Weeks 4, 5: (SDP1) Software Requirements.

 Weeks 6, 7, 8: (SDP2) Software Design.

 Weeks 9, 10: (SDP3) Software Construction.

 Week 11: (SDP4) Software Integration and Testing.

 Week 12: (SDP5) Software Delivery, (MP5) Closing

the iteration and (SP4) Iteration Retrospective.

 Weeks 13 to 16: Second iteration, adding or modifying

some use cases, (MP6) Closing the Project.

4 ESSENCE KERNEL USED FOR IDENTIFYING

THE SCOPE OF SOFTWARE ENGINEERING

FOR BEGINNERS COURSE

4.1 Alphas and its states

The purpose is to identify the initial alpha states at the begin-

ning of the course, describe their changes due to the practices

execution, and recognize the final states reached at the end of

the course. In the following text cursive letters are used for

distinguishing the alpha states.

 Opportunity: At the beginning of the course the opportuni-

ty is viable because the professors defined the scope of

the software system to be developed. They were based

on their experience and the knowledge assumptions of

the students. At the end of the course the opportunity is

addressed. The benefit accrued state is out of the course

scope.

 Stakeholders: The main educational decision of the Soft-

ware Engineering for Beginners course avoids the expo-

sure of the students to the real life customers. With this

assumption, the professors and assistants play the stake-

holder role. They are recognized and represented at the

beginning of the course, are involved and in agreement

during the course, and they judge (evaluate) if the sys-

tems developed by the students reach the satisfied for

deployment state. The satisfied in use state is out of the

course scope.

 Requirements: At the beginning of the course, the software

system requirements are defined in the Statement of

Work document, prepared by the professors. Also, they

are conceived, bounded, and coherent. The software de-

velopment practices: (SDP1) Software Requirements,

(SDP2) Software Design, and (SDP3) Software Con-

struction, lead the Requirements to the acceptable state.

The practices: (SDP3) Software Construction and

(SDP4) Software Integration and Testing, lead the Re-

quirements to the addressed state. Finally, (MP5) Clos-

ing the Iteration and (MP6) Closing the Project practices

leave the Requirements in the fulfilled state.

 Software System: Another important decision made by the

professors of the Software Engineering for Beginners

course is the selection of the architectural pattern MVC,

which is used by the students to develop the web applica-

tion software system. Therefore, we start the course with

the architecture selected and demonstrable due to the

wide usage of this pattern for this kind of applications.

The execution of the (SDP2) Software Design, (SDP3)

Software Construction, and (SDP4) Software Integration

and Testing practices lead the Software System to the

usable state. Finally, the (SDP5) Software Delivery,

(MP5) Closing the Iteration, and (MP6) Closing the Pro-

ject practices leave the Software System in the ready

state. The operational and retired states are out of the

course scope.

 Team: At the beginning of the course, the students are

split into groups of 4(+-1), so the Team alpha is seeded.

The social practices (SP1) Forming the Team, (SP2) De-

fining Team Communication and (SP3) Creating a Com-

mon Repository drive the Team to be formed. The man-

agement practices (MP1) Project Planning, (MP2)

Iteration Planning and (MP3) Executing the Plan allow

for learning how to become collaborating Team. The

(MP4) Assess and Control the Iteration practice shows

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #10, pp. 67–75, ISBN 978-958-775-080-5

 71

how to be performing Team. Finally, (MP6) Closing the

Project practice allows the movement to the adjourned

state at the end of course.

 Work: At the beginning of the course all the students start

with initiated Work. The (MP1) Project Planning and

(MP2) Iteration Planning practices lead them to have the

Work prepared. The (MP3) Executing the Plan practice

makes Work started and (MP4) Assessing and Control-

ling the Iteration practice sets Work under control. Final-

ly, the practices (MP5) Closing the Iteration and (MP6)

Closing the Project lead to conclude and close the Work.

 Way of Working: Designing the Software Engineering for

Beginners course the professors have established foun-

dation for the Way of Working of the students. In our

case, we used the KUALI-BEH Practice and Method

Authoring alphas for defining the Well Formed Initial

Method for Software Development. It means that this

method is composed by the coherent, consistent and

complete set of practices. During the first iteration, the

Way of Working defined by the method is In Use and In

Place learned and experienced by the students for the

first time. After the first iteration (SP4) Iteration Retro-

spective practice the method begins to be Working Well

for the second iteration. Finally, at the end of the course

the method is Retired, but we hope the method is not

forgotten by the students.

In summary, students learn and apply practices that allow

for them to achieve all Team and Work alphas states. They

experiment almost all states of Stakeholders by means of the

interaction with the professor and the assistants, except the

Satisfied in Use state.

Due to the Statement of Work predefined by the profes-

sors, they do not learn how the Opportunity can be Identified,

Solution Needed, Value Established and Viable. The Oppor-

tunity state of Benefit Accrued is also unachievable. Prede-

fined Statement of Work keep off the student experience the

Conceived, Bounded, and Coherent Requirements alpha

states. In a similar way, the pre-selection of MVC architec-

tural pattern prevents students to learn how to lead Software

System alpha to Architecture Selected state. The course time

boundary cut off the possibility to learn how the Software

System alpha can be Operational or Retired.

Finally, the Way of Working Principles and Foundation

are Established by the professors by using the course method,

but students learn and apply them by following the method in

two iterations.

Figure 2 shows the alpha states course coverage. The col-

umn cells represent the alpha states in increasing order. The

green color is assigned to states reached by students, profes-

sor reaches the orange states, and the red ones are out of the

course scope.

Figure 2. Coverage of alphas states.

4.2 Activity Spaces and practices

The Activity Spaces are analyzed for identifying the course

practices related to its description. The purpose is to under-

stand the coverage of Activity Spaces by the course practices.

In the following text cursive letters are used to distinguish the

name of Activity Spaces.

 Customer Activity Space: The Explore Possibilities is un-

related to any practice because the professors predefine

the Statement of Work and there is nothing to be ex-

plored by the students. The Understand Stakeholder

Needs is experienced by students during (SDP1) Soft-

ware Requirements practice. The (SDP5) Software De-

livery, (MP5) Closing the Iteration and (MP6) Closing

the Project practices help the students to Ensure Stake-

holder Satisfaction (the professor in this case). The Use

the System activity space is out of the course scope.

Figure 3 shows the Customer Activity Space coverage.

The abbreviations are the first capital letters of the activity

space names. The colors interpretation is the same as for Fig-

ure 2.

Figure 3. Customer Activity Space coverage.

 Solution Activity Space: The students develop the Under-

stand the Requirements activity space during (SDP1)

Software Requirements practice, The Shape the System

they cover in the (SDP2) Software Design practice. The

activity spaces Implement the System and Test the System

are related to (SDP3) Software Construction and (SDP4)

Software Integration and Testing practices. The Deploy

the System and Operate the System activity space ele-

ments are out of the course scope.

Figure 4 shows the Solution Activity Space coverage. The

abbreviations are the first capital letters of the activity space

names. The colors interpretation is the same as for Figure 2.

Figure 4. Solution Activity Space coverage

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #10, pp. 67–75, ISBN 978-958-775-080-5

 72

 Endeavour Activity Space: From the teaching point of

view, this activity space group is interesting. The profes-

sors and assistants during the course Prepare to do the

Work, Coordinate Activity, Support the Team, Track

Progress and Stop the Work, playing the mixture of the

consultants, projects managers and Scrum Masters roles.

On the other hand, the students experiment the same ac-

tivity space by using the method practices. They Prepare to

do the Work executing (SP1) Forming the Team, (SP2) De-

fining Team communication and (SP3) Creating a Common

Repository practices. They Coordinate Activity doing (MP1)

Project Planning, (MP2) Iteration Planning and (MP3) Exe-

cuting the Plan. They learn how to Support the Team in

(MP3) Executing the Plan practice and (SP4) Iteration Retro-

spective. The practice (MP4) Assessing and Controlling the

Iteration help them Track Progress of the project. Finally, the

(MP5) Closing the Iteration and (MP6) Closing the Project

practices shows them how to Stop the Work.

Figure 5 shows the Endeavor Activity Space coverage.

The abbreviations are the first capital letters of the activity

space names. The colors interpretation is the same as for Fig-

ure 2.

Figure 5. Endeavour Activity Space coverage.

In summary, it is difficult for students to learn the Cus-

tomer Explore Possibilities activity space because of the

Statement of Work pre-definition. Similarly, the Use the Sys-

tem activity space is not covered. The Deploy the System and

Operate the System Solution activity space are also out of the

course scope.

4.3 Competencies reached by the course method

The ESSENCE competencies are analyzed in order to identi-

fy their elements likely acquired by the students during the

Software Engineering for Beginners course. The Stakeholder

Representation competency is not analyzed because the stu-

dents are not involved. In the following text cursive letters

are used to distinguish the ESSENCE competency names,

their descriptions, specific competencies, and skills.

 Analysis: This competency encapsulates the ability to

understand opportunities and their related stakeholder

needs, and transform them into an agreed and consistent

set of requirements. During the course, every student—

as a team member—executes the (SDP1) Software Re-

quirements practice. It means that every student, starting

with Statement of Work, collaborates in the identification

and agreement on the general use case diagram, and de-

velops for at least one use case, its detailed description,

test cases and user interface prototype.

With this experience, repeated in two iterations, we ob-

served that, by the end of the course, the students have the

following analytical competencies: Capture, understand and

communicate requirements, Create and agree on specifica-

tions and models, Visualize solutions and understand their

impact. But we cannot expect that they know how to: Identi-

fy and understand needs and opportunities and Get to know

the root causes of the problem.

The essential skills we teach include: Requirements cap-

ture, Ability to separate the whole into its component parts,

Ability to see the whole by looking at what is required, Ver-

bal and written communication, Ability to observe, under-

stand and record details and Agreement facilitation.

 Development: This competency encapsulates the

ability to design and program effective software systems

by following the standards and norms agreed by the

team. By means of the execution of (SDP2) Software

Design practice, (SDP3) Software Construction and

(SDP4) Software Integration, and Testing practices stu-

dents experiment how to use the selected architectural

design pattern (MVC); how to model the static and dy-

namic solutions to use cases by using class and sequence

diagrams; how to model the interface navigation using

states diagram; and how to model the database using En-

tity-Relation diagram. Finally, they code and practice unit

tests, experiment code integration and system testing.

After the repetition in two iterations of those activities,

they acquire the development competency for: Design and

code software systems but not for: Formulate and/or evalu-

ate strategies for choosing an appropriate design pattern or

for combining various design patters, Design and leverage

technical solutions, and Troubleshoot and resolve coding

problems.

The essential skills they improve include: Knowledge of

technology, Programming Knowledge of programming lan-

guages. But we are not sure they reach Critical thinking.

 Testing: This competency encapsulates the ability to

test a system, verifying that it is usable and that it meets

the requirements. The (SDP4) Software Integration and

Testing practice introduces the students to some basic

testing techniques, so we can say that they acquire the

testing competencies of: Test the system, Create the cor-

rect tests to efficiently verify the requirements, and

Evaluate whether the system meets the requirement, but

not how to Decide what, when and how to test and Find

defects and understand the quality of the system pro-

duced.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #10, pp. 67–75, ISBN 978-958-775-080-5

 73

They do not experiment enough testing for obtaining es-

sential skills such as Keen observation, Exploratory and de-

structive thinking, Inquisitive mind and Attention to detail.

 Leadership: This competency enables a person to in-

spire and motivate a group of people for achieving a suc-

cessful conclusion to their work and meeting their objec-

tives. The Social and Management practices allow for

some students, particularly the Team and Collaboration

Responsible, developing the leadership competency to:

Inspire people to do their work, Make sure that all team

members are effective in their assignments, Make and

meet their commitments, Resolve any impediments or is-

sues holding up the team work and Interact with stake-

holders to shape priorities, report progress and respond

to challenges.

Also, they develop essential skills like: Inspiration, Moti-

vation, Negotiation, Communication and Decision making.

 Management: This competency encapsulates the

ability to coordinate, plan and track the work done by a

team. The Management practices help the students to:

Proactively manage risks, Interact with stakeholders to

report progress, Coordinate and plan activities, Account

for time but not for Money spent.

The essential skills developed by students include: Com-

munication, Administration, Organization and Resource

planning but not Financial Reporting.

In summary, the Analysis has shown the students can likely

acquire most of the competencies and skills, but in the case of

Development and Testing is difficult to reach them in begin-

ner course. The Leadership competency can be developed

during the course but it depends on the student personal abili-

ties to reach them. Finally, the Management competency can

be learned and applied pretty much during the course except

financial aspects.

Figure 6 shows the high level competencies coverage. The

green color is assigned to competencies mostly reached by

students, the yellow colored competencies are reached par-

tially and the red one is out of the course scope.

Figure 6. Competencies coverage.

We can argue that the level of competencies covered by

the course is level 2 (Applies) because our students “Demon-

strate a basic understanding of the concepts and can follow

instructions” and are “Able to apply the concepts in simple

contexts by routinely applying the experience gained so far”

—as defined in ESSENCE.

5 DISCUSSION

5.1 Alphas

The ESSENCE kernel has seven alphas with 41 states in to-

tal. Analyzing Figure 2 we note that 21 states (51%) are cov-

ered by the student activities, 16 (39%) are covered by pro-

fessor/assistants, and 4 (10%) are not covered.

The Team and Work alphas are covered completely by the

student activities. This fact means they practice how to or-

ganize and manage the collaboration in teams. They do so by

following the method defined by professors as Way of Work-

ing, exercising the states In Use, In Place, Working Well and

Retired.

The Requirements states Acceptable, Addressed and Ful-

filled and Software System Usable and Ready states are

reached by the students by following the course method soft-

ware development practices. In our opinion, these practices

are the essence of any software engineering course for begin-

ners.

Additionally, the Addressed state of the Opportunity alpha

is also reached because at the end of the course students de-

liver a functional and documented software system in order to

be evaluated by the professors. Getting a good grade is the

student “opportunity” of this course.

The alpha of Stakeholder is covered mainly by the profes-

sor and assistants because they are involved in the course by

supporting the student teams and ensure that an acceptable

software system is produced.

The Software System alpha is partially covered by the pro-

fessor because of the decision to impose the architectural pat-

tern MVC, which is used by the students to develop the web

application.

The Way of Working alpha states, Principles and Founda-

tion Established, are also covered by the professors because

they defined the content of Initial Method for Software De-

velopment.

The states of the alphas Benefit Accrued of Opportunity,

Satisfied in Use of Stakeholders, Operational and Retired of

Software System are out of the scope of the course because

the software system developed by students will not be put in

real life operation.

The students reach many states of the alphas due to the

method defined for the course (Way of Working), which in-

cludes the necessary basics for software development. Thanks

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #10, pp. 67–75, ISBN 978-958-775-080-5

 74

to this method, students learn the essentials for Requirements

and Software System alphas. Also, the course covers the

basic activities for teamwork and work management (Team,

Work). Hence, we would like to highlight the importance of

practice selection and its organization in a coherent method.

5.2 Activities spaces

The students experiment the practices related to 73% (11

out of 15) of ESSENCE kernel activity spaces, except 1 (7%)

covered by the professor and 3 (20%) out of the course scope

(see Figure 4 and Figure 5).

The Costumer Explore Possibilities activity space is not

experienced by the students because the professors predefine

the Statement of Work and there is nothing to be explored by

them. However, the Understand Stakeholder Needs is experi-

enced by students because they have to Ensure Stakeholder

Satisfaction (the professors in this case) at the end of the

course (see Figure 4).

The development practices let the students to Understand

the Requirements, Shape the System, Implement the System

and Test the System of the Solution activity space (see Figure

4). In similar way, the social and management practices let

the students to experiment all Endeavor activity space ele-

ments (see Figure 5).

The execution of Deploy the System, Operate the System,

Use the System activity spaces are out of the course scope

(see Figure 3 and Figure 4) for the reason we have already

mentioned in section 4.1.

5.3 Competencies

The six ESSENCE kernel competencies were achieved in the

following way: two are mostly reached by students, three are

partially reached, and one is out of the scope of the course

(see Figure 5).

We can argue that the Analysis and Management compe-

tencies are reinforced by several practices, but we are aware

that Development and Management competencies are only

reached at very basic level. The evaluation of Leadership

competency is difficult. We think that several social practices

and the role definitions help to reinforce this competency, but

we are not sure all students achieve it at the end of the

course.

The software Engineering course presented is addressed

to beginners therefore the expected level of competencies

achieved by the students is 2.

6 FINAL CONCLUSIONS

The objective of the Chapter was to identify the scope of the

ESSENCE elements covered by the Software Engineering for

Beginners course. The relationship between the ESSENCE

kernel alphas, state changes in the alphas, activity spaces,

competencies and the course elements was analyzed in sec-

tion 4 based on teaching experience.

The discussion in Section 4 confirms our hypothesis that,

even though Software Engineering for Beginners course has

learning limitations, it allows covering all alphas (but not all

their states), activity spaces, and it is possible to reach several

competencies until level 2. ESSENCE can be covered in a

course for beginners so that students can learn and practice

the basics of this discipline and have first experience as practi-

tioners.

ESSENCE is a good tool for software industry for meas-

uring the health of their projects by using the checklists de-

fined as criteria for alphas states. It is assumed that practi-

tioners already know how to get from one state to another.

On the contrary, the professors should guide the students on

how to achieve healthy states. The tasks outlined in activity

spaces are too general to serve as a guide of what to do. For

example, there is a gap between Demonstrable and Usable

states of Software System alpha due to missing hints in the

activities spaces of how to fill the construction activities.

Nevertheless, we can conclude that ESSENCE can be a

useful guide for experienced professors used for designing a

software engineering course.

7 REFERENCES

Agile Alliance. "Manifiesto for Agil Software Engineering".
Available http://www.agilealliance.org/the-alliance/the-
agile-manifesto/ [03/04/2014]

Anderson, D. J. 2010. Kanban. Successful evolutionary
change for your technology business. Sequim: Blue Hole
Press.

Bohem, B. & Turner, R. 2004. Balancing Agility and Disci-
pline. A guide for the Perplexed. Boston: Addison Wes-
ley.

Buschmann, F., Meunier, R., Rohnert, H. & Sommerlad, P. &
Stal, M. 1996. Pattern-Oriented Software Architecture.
Volume 1: A System of Patterns. Wiley

CMMI. CMMI Version 1.3 (CMU/SEI-2010-TR-033). Car-
negie Mellon University. Available:
http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9661 [03/04/2014]

Humphrey, W. 1999. Introduction to Team Software Pro-
cess.Massachusetts: Addison Wesley.

ISO/IEC 29110. 2011. ISO/IEC TR 29110-5-1-2 Software
engineering - Lifecycle profiles for Very Small Entities
(VSEs) - Management and Engineering Guide: Generic
profile group: Basic profile.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #10, pp. 67–75, ISBN 978-958-775-080-5

 75

Jacobson, I., Booch, G. & Rumbaugh, J. 1999. The Unified
Software Development Process. Massachusetts: Addison
Wesley.

Jacobson, I., Ng, P., McMahon, P.E & Spence, I. & Lidman,
S. 2013. The ESSENCE of Software Engineering. Appli-
ying the SEMAT Kernel. Indiana: Addison Wesley.

ESSENCE. "Essence—Kernel and Language for Software
Engineering.” Available:
http://www.omg.org/spec/Essence/1.0/Beta1/PDF/
[03/04/2014]

Rumbaugh, J., Jacobson, I. & Booch, G. 1998. The Unified
Modeling Language. Reference Manual. Addison Wesley.

Schwaber, K. S. 2011. "The Scrum Guide—The Definitive
Guide to Scrum: The Rules of the Game". Available:
http://www.scrum.org/storage/scrumguides/Scrum%20G
uide%20-%202011.pdf

SEMAT. "Call for action". Available:
http://semat.org/?page_id=2 [03/04/2014]

SWEBOK. "Guide to the Software Engineering Body of
Knowledge v3.0". IEEE Computer Society. Available:
http://www.computer.org/portal/web/swebok/v3guide
[03/04/2014]

This page intentionally left blank

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

1 INTRODUCTION

How to teach software engineering has been an endless

concern for lecturers, practitioners, and researchers in the

field of software engineering. As a result, there are nowadays

several international peer-reviewed conferences and work-

shops in which researchers, educators, and industry trainers

around the world have been publishing their research for sev-

eral decades. The covered topics within these venues range

from technical subjects to social and cultural issues that often

arise during team work and project management. Apart from

that, there have been several initiatives led by guilds such as

IEEE and ACM that have served to improve and standardize

the topics that should be taught to future software engineers.

For instance, the SWEBOK Guide, created by means of co-

operation among several professional bodies and members of

industry and published by the IEEE Computer Society, has

played a decisive role in shaping the software engineering

curriculums and the content, emphasis, and didactic strategies

of training programs around the world.

Over the years, as part of a continuous evolution process,

the practice of software engineering in industrial contexts and

the way it is taught at universities and institutes have co-

evolved and have influenced one another. On the one hand,

academic institutions have been responsible for preparing new

cohorts of software engineers who will eventually lead the

software industry; and simultaneously, supporting research

groups provide insights into the most complex and controver-

sial issues in the area. On the other hand, from the large

group of software practitioners have emerged industry leaders

who have provided academia with practical knowledge on

how to improve the way we build and maintain software sys-

tems and deal with the challenges of our ever changing field.

One of the most influential industry contributions to the

field of software engineering is what nowadays is known as

the Agile Movement (http://agilemanifesto.org/). Although

agile methods started to be really important since mid-1990s,

their practices, principles and values have been around long

time ago (Larman, 2003). Within the old ideas reused by agile

methods, it is worth to mention the iterative and incremental

development, used since 1950s in NASA and the IBM Feder-

al Systems Divisions; the crucial role of user feedback, that

years later became the core of agile principles and values; the

frequent delivery, that encourages the developers to complete

analysis, design and test in each step; and the response to

change, which clearly stated that software development is an

adaptive process rather than a predictive one, and therefore,

software teams must deal with changes in requirements, tech-

nology, and even, modifications in the agile method itself.

Although several studies have reported improvements in

productivity, quality, and customer satisfaction by using agile

methods, there have been also identified some deficiencies

and space for improvements. In 2009, the SEMAT initiative

was launched aimed at reshaping software engineering in such

a way that it qualifies as a rigorous discipline

(http://semat.org/). As agile methods, SEMAT promotes iter-

ative and incremental development, self-organized teams, and

the same philosophical principles. However, SEMAT is not

one more agile method and does not come to replace or com-

pete with existing methods. Conversely, the current SEMAT

elements provide developers with a new way of looking at the

domain of software engineering in which is feasible for soft-

ware teams to perceive and track the progress and health of

development efforts, to combine agile practices according to

the particular circumstances of each project, and to use a

common reference model and language to talk and improve

their ways of working. Thus, as Jacobson, Spence and Ng

say, “combining agile and SEMAT yields more advantages

than either one alone” (Jacobson et al. 2013).

At Universidad Nacional, Bogotá campus, the teaching of

software engineering for bachelor students is concentrated in

two consecutive courses, one pre-requisite of the other: soft-

ware engineering I and software engineering II. The first

course covers several topics, including the software engineer-

ing fundamentals, a brief introduction to project management,

object-oriented design using UML, a brief review of agile

Chapter #11

On the use of the SEMAT kernel within a software engineering course

D. F. Cifuentes Gil
Universidad Nacional de Colombia, Bogotá, Colombia

J. S. Hernández Serrato
Universidad Nacional de Colombia, Bogotá, Colombia

J. H. Aponte Melo
Universidad Nacional de Colombia, Bogotá, Colombia

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 78

methods along with frameworks for process assessment and

improvement such as CMM, SPICE, and Cobit. The second

course is mostly a hands-on experience, and therefore, is fo-

cused on the development of a software system from scratch,

usually a web application, by following an agile method cho-

sen by the software team. This Chapter describes a prelimi-

nary experience using SEMAT in combination with the agile

practices that traditionally have been used by the students in

this second course during the last years. Specifically, the

Chapter discusses several issues including how to teach the

SEMAT essentials, how to organize the teams, which tools

could be used for supporting the diverse activities of the

software project, and how to monitor and assess the work of

the students.

The Chapter is organized as follows. In Section 2 we pre-

sent the work related to this Chapter. In Section 3 we de-

scribe how agile software development is taught and prac-

ticed within a software engineering course at Universidad

Nacional de Colombia, and also, how the SEMAT
1
 kernel can

be introduced and coupled with the existing topics. In Section

4 we describe two software projects that were carried out

under the context and methodology described in the previous

section. In Section 5 we summarize the student feedback

about the course and the use of SEMAT in academic con-

texts. Finally, in Section 6 we give conclusions and sums up

future work.

2 RELATED WORK

As was mentioned above, there are a number of publications

regarding software engineering education. This is a clear indi-

cation that teaching software engineering, like the practice of

software engineering, suffers from the lack of a general

framework and a common language that allow for lecturers

and researchers to work together and compare their pedagog-

ical alternatives. In this Section we restrict ourselves to the

most relevant work that has used agile principles and hands-

on approaches for teaching software engineering, and mostly,

to pedagogical proposals that combine agile methods with the

SEMAT kernel and language.

Since the early 90s, several researchers and lecturers have

reported experiences with project-based approaches for

teaching software engineering. For instance, Oudshoorn and

Maciunas (1994) describe an experience where the students

are required to build a software application to satisfy the re-

quirements defined by the lecturing staff. Although the pro-

jects were carried out by following a traditional process mod-

el, the authors highlight the success of the course in terms of

educative outcomes and popularity among the students.

Pierce (1992) points out the benefits of assigning maintenance

exercises in a project-based course in software engineering. In

1
 The theoretical framework related to SEMAT is com-

pletely described in the Preface of this book.

a more recent work, Gnatz et al. (2003) argue that teaching

software engineering requires covering the technical skills and

providing students with the opportunity to deal with typical

non-technical issues such as working in a team, conflict reso-

lution, organizing the division of work, tracking activities,

etc.

In the same vein, Budd & Ellis (2008) argue that is far

more effective to involve student teams directly in a project

than the approach where case studies of existing systems are

used to study the methods applied to develop these systems.

Razmov (2007) presents a package of pedagogical practices

that supports the learning goals in a project-based software

engineering course and allows for instructors to implement a

continuous improvement of the course. As an even more re-

cent experience, we can mention Bavota et al. (2012) who

present an approach for teaching simultaneously two project-

based courses, namely software engineering and software

project management, in which students of both courses are

mixed to form the teams.

The adoption of the agile philosophy within software en-

gineering courses has been reported in several papers. It is

worth mentioning the work reported by Alfonso and Botia

(2005) in which they explain how an agile process serves as

the backbone for teaching the course and for the incremental

learning of both technical and managerial matters that arise in

a typical software project. Muller and Tichy (2001) and

Shukla and Williams (2002) present classroom experiences

where they analyze, assess, and integrate extreme program-

ming practices into a software engineering course. As a more

general example, Rajlich (2013) explains how iterative soft-

ware development is taught at Wayne State University, and

highlights the fact that the students learn the skills they re-

quire to work as developers on software projects.

Regarding the combination of SEMAT and agile process-

es, our work is completely aligned with the ideas presented by

Jacobson et al. (2013). They point out the similarities be-

tween the philosophies promoted by these initiatives and ex-

plain what SEMAT adds to agile methods and vice versa.

Thus, our work can be described as a preliminary effort for

mixing agile principles, values, and practices with the kernel

and language provided by the SEMAT initiative, in an aca-

demic context. In this regard, it is noteworthy that Ng and

Huang (2013) present the preliminary feedback given by sev-

en Chinese universities about the challenges software profes-

sionals face and how the SEMAT kernel and language may

help them to provide students with the fundamentals and

cognitive tools required to learn and understand the diversity

of software industry, and also, to overcome those future chal-

lenges.

There are recent teaching experiences of the SEMAT ker-

nel in universities and companies as was mentioned by Kajko-

Mattsson et al. (2012). In this regard, the SEMAT website

keeps an up to date list of publications. Within this set of con-

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 79

tributions, we consider highly relevant the proposal published

by Zapata and Jacobson (2014) where they present a curricu-

lum for teaching a SEMAT course. By contrast, this Chapter

discusses the integration of the SEMAT kernel to an existing

project-based undergraduate course of software engineering

that teaches further topics related to agile methodologies.

3 COMBINING AGILE METHODS AND SEMAT

This section explains how agile software development is

taught and practiced within the second course of software

engineering at Universidad Nacional de Colombia, in Bogota.

Moreover, we discuss the particularities of the academic con-

text in which the students carry out the software projects.

Lastly, we describe how the SEMAT kernel and language

were introduced and coupled with the existing subjects, and

how they were used by the teams and the lecturer.

3.1 Agile projects within a software engineering

course

Traditionally, the second software engineering course begins

explaining software life cycle models, with focus on agile

methods. Specifically, during the first three weeks (12 class-

room hours) the course covers the values and principles pro-

moted by the agile manifesto, an overview of the agile meth-

ods defined so far, and a detailed description of Extreme

Programming and Scrum as these are two of the most popu-

lar methods.

During these three initial weeks other important things

happen in parallel with the lectures. First, the students by

themselves form teams of 4-to-6 people. The lecturer inter-

venes only in those cases in which a student fails to join a

group or when it is necessary to join up two small groups.

The teams are encouraged to discuss and make decisions

about managerial aspects of the endeavor, such as deciding

who the team leader is, the frequency and type of meetings

they would attend, and establishing the set of values and prin-

ciples they are willing to adopt for their software endeavor.

Second, the students hold brainstorming sessions in which

they explore possible software projects they could develop

during the semester.

The selected project is often a system in which the team is

really interested, and therefore, the motivation is usually high

along the entire project lifecycle. Sometimes the project ad-

dresses real needs of a private company or a public institu-

tion. In any case, by the second week of classes every group

must have an approved project to work on. Lastly, each team

assesses the resources they have and the risks of the project

by appraising the available time per week of each member,

hardware and software assets, and knowledge and program-

ming skills of each person; as well as the skills, knowledge,

and technology required for developing the system.

As a deliverable of this starting phase, each team has to

hand in a document presenting the problem to solve, the solu-

tion proposed, the team and its resources, the technology re-

quired, and the agile method to be used. The software meth-

od should be adapted to the specific circumstances of the

academic context where the software endeavor takes place.

For instance, adopting extreme programming may require

modifying or ignoring some practices such as the 40-hour of

work per week and the client is here. These adaptive changes

of the agile method are due to the circumstances described in

the next section.

Once the teams have been organized and the projects have

started, the rest of the course focuses on the technical aspects

in order to support the development effort. Thus, the main

subjects covered are control version systems, frameworks for

web development, design patterns, testing, and software qual-

ity.

In addition, there are three formal presentations of all the

projects at weeks 7, 11, and 16. The presentations show the

work performed so far, in chronological order. One concrete

way of doing that is showing the planning of each of the itera-

tions performed, and also, describing the software artefacts

resulting from this work: UML diagrams, user interfaces, test

cases, etc. Each presentation ends with the execution of the

latest stable version of the system in order to show the func-

tionality effectively implemented so far. Besides that, at the

end of the semester all groups participate in an open exhibi-

tion where they have the chance of presenting their project to

the general public, and the university community in particular.

3.2 The particularities of the academic context

When comparing an academic project with a true software

project, the first circumstance to consider is that the students

are not competent developers yet and they are immersed in a

learning process where the risks and pressures of a real pro-

ject are usually not present. Moreover, this academic envi-

ronment should allow for them to study the technical subjects

required by the project, learn how to build software, and

practice the learned subjects to develop the skills required by

the software endeavor.

There is no client. Although the lecturer and a teaching

assistant occasionally act as clients, the absence of a real cli-

ent limits the practice of several important agile practices in

which the role of the client is crucial in guiding the project

and deciding which the most important requirements are.

The time devoted to the project by the students and the

schedule of their meetings are also variables that depend on

multiple factors like the number of team members, the num-

ber of courses in what they are enrolled, and their individual

class schedules. In our course, the teams are between 4 and 6

members, each person devotes between 4 and 8 hours per

week to the project, the teams conduct at list one face-to-face

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 80

meeting a week, supplemented with several types of comput-

er-mediated communications.

Thus, the academic context hinders or even prevents the

teams to put into practice some agile principles related to

high client involvement, fixed weekly working time on the

project, daily scrum meetings, reaching a pace at which the

development team can comfortably work for the entire pro-

ject life span, and maintaining collocated teams to improve

coordination among the members.

Finally, for the lecturer is difficult to monitor and appraise

the progress of each individual project. Each semester there

are 7 or 8 projects that cover a wide variety of domains, use

different technologies, and implement dissimilar practices and

team dynamics. For instance, students have used several

frameworks for developing a number of web applications,

several game engines for making action, strategy and casino

games, APIs for developing mobile applications, mostly for

the Android platform, and the SDK for Kinect applications.

3.3 Introducing and using SEMAT

The first change we made to our traditional approach was the

introduction of the SEMAT kernel and language. We use the

first 4 weeks of classes to teach agile and SEMAT by using

the schedule shown in Table 1. This plan includes slide

presentations, readings, questionnaires, as well as the manu-

facturing of a set of physical kernel cards. The readings are

the first and second parts of the Essence book, and also, some

of the resources available at the SEMAT website.

Table 1. Schedule for introducing agile and the kernel

Week Subject

1 Agile principles; overview of Scrum and XP

The SEMAT initiative

2 The Kernel and its alphas

3 Practices and kernel benefits

4 Planning, doing, and checking with the kernel

Running an iteration

Apart from that, the structure of the document that each

team has to hand in describing the project was changed ac-

cording to the SEMAT alphas. Thus, the document has to in-

clude the following sections:

Opportunity alpha. Describing the circumstances that

make it feasible and desirable to construct the system you are

proposing. Suppose that your arguments should be convinc-

ing enough for a group of potential sponsors.

Stakeholders alpha. Listing the people, groups, or organi-

zations that would be affected either positively or negatively

by the system you plan to implement. Likewise, students

should list the persons, groups or organizations that could af-

fect the project. In each case, they explain how that impact

would be.

Requirements. Listing the major real needs that the system

should satisfy.

Team. Making a table to describe each team member with

the following columns: (i) name, (ii) hours per week dedicat-

ed to the project, (iii) technical features of the computer she

is going to use for working on the project, (iv) technical skills

such as developing tools, programming languages, methodol-

ogies, prior experience in software development, etc. In addi-

tion, specify who the coach (leader) is.

 Way of working.

 Defining the list of values and principles that will guide the

development of the project.

 Defining the agile practices adopted for the project.

 Defining the set development, administration, and commu-

nication tools that will be used during the project.

 Defining the set of core artifacts built during the project

(e.g., user stories, UML diagrams, product backlog,

sprint backlog, etc.)

Since at that point the team has not started the system

construction, the System alpha is not included in this project

definition document.

The three formal presentations of all the projects men-

tioned above were also modified according to the kernel al-

phas. Thus, each team should show the iterations performed

so far, in chronological order, and the status of the project

within each of the seven dimensions or alphas. The impact of

using SEMAT for monitoring progress and health of the pro-

jects is remarkable. The SEMAT alphas allow for the lecturer

and the students to track and assess the progress of each pro-

ject, identify issues that hinder state transitions, and also,

compare the ways of working of the teams. In other words,

SEMAT provides a common setting in which all projects can

be displayed and compared at the same time.

4 TWO PROJECTS THAT USED SEMAT

In this Section we present the first two projects carried out

under the context and methodology described in the previous

Section. The students used practices and artifacts from the

Scrum method and SEMAT as a tool for measuring progress

and planning the work. Both teams were enrolled in a course

called Advanced Topics in Software Engineering, where the

principal topics treated were SEMAT, agile methods, and

FLOSS.

The first part of the course takes into account two parallel

tasks: learn about how to use and implement the SEMAT

kernel, and secondly, develop a software project using agile

practices and the kernel. The first and second authors of this

chapter were the leaders of these two teams.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 81

The main goal of both projects was to create a functional

and usable version of two web applications. Figure 1 shows

the skinny desirable system on which the initial planning of

the projects would be based.

4.1 Hi-Q SEMAT Experience Report

4.1.1 Description of the project

Hi-Q or Peg Solitaire is a board game for one player in-

volving movement of pegs on a board. In its standard version,

the board has 33 holes arranged in the shape of a Greek

cross. The left board in Figure 2 shows the initial state of the

game in which there are 32 pegs occupying all holes, except

the one at the center of the board. The only allowed move is

jumping a peg X over any one of its immediate neighbors,

let’s say Y, as long as the target is an unoccupied hole. At the

same time the peg Y is removed from the board. The board

on the right side of Figure 2 is the result of an opening

movement. The pegs can be moved only horizontally or verti-

cally, and the goal is to find a sequence of moves (jumps) that

leaves only one peg at the center of the board.

The initial requirements for an online version of this game

include: allow for the user to play Hi-Q with the standard

board of 32 pegs (see Figure 2), count movements, undo and

redo actions, change the initial configuration of pegs (see

Figure 3), and the use of a timer.

Figure 1. The skinny system

Figure 2. An opening movement

Figure 3. Other initial configurations of pegs

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 82

4.1.2 Tools

The team decided to use several tools for supporting some

usual technical and managerial tasks of a software project.

First, a Facebook group and short meetings every two weeks

were the communication media used by the team. Second, for

controlling each member tasks, the team used the virtual can-

vas provided by Mural.ly, where each card can be posted, in

order to represent every alpha state (see Figure 4). Lastly, the

team hired Google services to track the software evolution,

including Google Docs for storing documents, Google Code

project hosting service, and also, Google App Engine was

used to deploy the application.

For software development they used Java and JavaScript,

with the Netbeans IDE. Java was used for the business enti-

ties logic and JavaScript for controlling the web user interface

and consuming the methods exposed by the business logic.

4.1.3 Agile Practices adopted

While the team was learning what SEMAT is and how to

use it, as a group they decided which practices would be

used, based on what they found on the literature. Among the

main practices adopted they highlight the use of short itera-

tion cycles, incremental development, pair programming, and

working software as measure of progress from XP; prototype

development from the prototype development model; the use

of a product backlog, having a couch, talking to stakeholders

for continuous feedback, having a short meeting every class

day, doing a sprint planning each two weeks from Scrum; and

finally, tracking the progress of the team by measuring an es-

timated time and spent time for each specific task done.

Figure 4. Mural.ly preview for state cards

4.1.4 Iterations

Since the available time was not enough to build a complete

system and the main goal was to experiment the Ag-

ile/SEMAT combination, they decided to perform only three

iterations. In this Section we summarize the three iterations

and we point out their salient points.

4.1.4.1 Iteration 1

In this initial iteration the group had a hard work mainly be-

cause, at that moment, there was no previous experience

working as a team and using the kernel. Thus, the first task

was to know each other. Two of team the members are sys-

tem and computing engineering students, focused on software

engineering, who had worked together in several software

projects. The other member is a computer science bachelor

who came from Germany and has no too much experience

with the development of this kind of projects.

As a second task, the team focused on the project status to

determine where they are, and where they want to go. Thus,

the team used the kernel to agree on the current state of the

project. Using the planning poker approach, each alpha and

each state were reviewed by the team members, and every

member gave arguments about why a state were reached or

not, until achieving an agreement.

As a result, the team got the target states for this iteration:

Way of working: Foundation Established, Team: Perform-

ing, Work: Started, and Software system: Demonstrable. For

reaching those states, the team created several assignments

for each team member. Unfortunately the team could not fin-

ish all the tasks proposed for this iteration, due to the lack of

experience for estimating the time required by each task. Fig-

ure 6 shows the final state for this iteration.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 83

The artifacts produced were a document that describes the

way of working of the team, a group of classes such as Play-

Field as main entity class and PlayFieldSolver for business

logic of the game, and also, an HTML page with the first ver-

sion of the user interface.

4.1.4.2 Iteration 2

With the first iteration as experience using the kernel, the

team had a better idea of how to guide its effort and estimate

the tasks required for reaching a state. Accordingly, the target

states proposed for the second iteration were: Stakeholder:

Involved, Way of working: In use, Work: Under control, and

Software system: Demonstrable.

This working cycle is particular since it includes a target

state that should be reached in more than one iteration. The

state mentioned is Software System: Demonstrable. Having

an unreachable state, did not mean the tasks for the iteration

would not be finished. For that reason, there are only a few

tasks listed that could be finished within the iteration.

After identifying the target states and their characteristics,

the team began their work. The team noticed that they need

to measure and track the progress, especially who the owner

of a task is and how much time is going to spend in order to

fulfill the labor. For that reason, the team decided to add new

information at the end of the task description which includes

the estimated time, the task owner, and the real spent time.

(see Figure 5).

Figure 5. Tasks with tracking information

Finally, the group closed the iteration without any kind of

problem. At the end of this work cycle, a new version of the

software system was released which contains an enhanced us-

er interface and a lot of new features, including playing the

game and the undo/redo actions.

Figure 6. Iteration 1 at its final state

4.1.4.3 Iteration 3

By a suggestion of the lecturer, and after assessing the cur-

rent state of the project, the team agreed to reach the skinny

system milestone, by the end of the third iteration. Hence, the

states the project must reach are: Software System: Demon-

strable, Way of working: In Place, and Stakeholder: In

Agreement. This goal resulted in a bunch of tasks to be done,

so that this iteration was the most challenging for the team.

The tasks assignment was in such a way that each member

was in charge of the task most suitable for their knowledge

and skills. Thereby, one of the members focused on business

logic, an automatic solver, and several entity attributes with

its methods; the second member focused on exposing the

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 84

methods created by the first one, as services for being con-

sumed from the interface; and the third member focused on

enhancing the user interface and adding features based on the

methods already exposed. At the end of this iteration, the tar-

get was reached and a usable version of the game was de-

ployed (see Figures 7 and 8).

Figure 7. Final interface with new features

Figure 8. Setup menu

4.1.5 Difficulties

During this project, the team had two drawbacks which have

a considerable impact on each iteration. Firstly, when plan-

ning an iteration, it was often difficult to decide whether an

state would be reached by doing the corresponding tasks. The

reason was that some items of the checklists were ambiguous

for some participants of the meeting. Secondly, although the

canvas with the committed tasks is very useful, it loses its

value as project management tool when a task is created and

there is no automatic way to notify the member who was as-

signed to that task.

4.1.6 Previous experiences

The team members had very different experiences with soft-

ware development processes and the way of working. For this

reason, the way of working experimented several changes

from the beginning of the project.

Two of the members had developed several web applica-

tions, so that they were already familiar with JavaScript, Java,

and the MVC pattern. Additionally, they had worked with ag-

ile methodologies, namely, Scrum and XP. The third member

just had a strong experience creating java components, and he

did not know how to expose the methods for a web based

application. Besides, he did not have any experience with ag-

ile process, and therefore, he learned this kind of ways of

working during the project lifecycle.

4.2 SEMAT assistant experience report

4.2.1 Description of the project

The SEMAT assistant would be a web application based on

project management for software development with the

SEMAT kernel. The tool will support the software teams for

the development of their projects, and will allow for them to

manage their requirements, tasks, and project status over

time.

The idea of creating this tool arises due to the lack of ap-

plications on the market for supporting the SEMAT initiative.

The tool will be implemented based on the SEMAT kernel,

and will manage the Dashboard, the Task Board. Besides, it

should allow users to define iterations and establish practices

for the team. Its main goal is to facilitate and streamline the

development of and agile software projects that uses the

SEMAT kernel.

4.2.2 Tools

The team selected the following tools for developing the

SEMAT assistant:

 Java: Java was chosen because the visual part can be easily

achieved with a framework.

 Eclipse IDE: As integrated development environment

Eclipse was chosen since it is lightweight and versatile.

 SQLite: A portable database.

 Maven: for packaging the project and managing the librar-

ies.

 MercurialHg: For managing versions.

 Tomcat: As web server.

 PrimeFaces: For the managing the components of the web

interface.

 JPA: For communication with the database.

 Software for work coordination:

o Google docs to manage and share documents.

o Skype or Google Hangout to coordinate meet-

ings.

o Mura.ly to manipulate the set of SEMAT cards,

and also, to control the progress of each itera-

tion

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 85

4.2.3 Agile Practices adopted

Based on the previous experiences of some members of the

team the following practices were adopted:

 The development methodology is based on the kernel

and adding some of the Scrum practices.

 Unit testing. The framework chosen for unit testing is

JUnit. The unit tests will be performed by the devel-

oper when new functionality is developed.

 Continuous integration by using Jenkins.

 Iterative development. Iterations will last between two

and three weeks.

4.2.4 Iterations

In this Section describes the iterations of the project in which

we applied concepts and practices of the SEMAT initiative

for the development of this web application. The development

of the tool was carried out on one initial phase and four itera-

tive cycles. For each iteration, they present its goals and de-

scribe the tasks, as well as an overview of the progress of the

project and the team organization for achieving the proposed

goals.

4.2.4.1 Definition initial state

First of all, the four team members determined the initial state

of the project based on the planning poker approach. After

discussing about each alpha, they agreed on the initial state of

the project as: Opportunity: Identified, Stakeholders: Recog-

nized, Requirements: Conceived, and Team: Seeded.

4.2.4.2 Iteration 1

The timebox was set for 3 weeks and the targets selected

were: Opportunity: Solution needed, Stakeholders: Repre-

sented, Requirements: Bounded, Software system: Architec-

ture selected, Team: Formed, Work: Initiated, and Way of

working: Principles established.

They agreed on having a weekly meeting to review project

progress and feedback. The main tasks performed were the

definition of the architecture, setting up development envi-

ronment, definition of the responsibilities of each team mem-

ber, and training the team members on the tools to be used.

Figure 9. Final state of the iteration 1

Iteration was successfully completed and all planned tasks

were performed. As retrospective outcomes, it was suggested

to change the version control system (Mercurial) and rein-

force skills in Java for the members that are still not familiar

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 86

with the language. Figure 9 shows the final state of the itera-

tion.

At this stage, it was very important to gain the knowledge

required to balance the development skills of the team mem-

bers. The main purpose of choosing the targets was to clarify

what is going to be developed and the scope of the project.

As for gathering information, constant communication was

maintained during those two initial weeks of the timebox with

the stakeholder. At the end of the iteration it was considered

that the goals were reached.

4.2.4.3 Iteration 2

The timebox was set for 2 weeks and the targets selected

were: Opportunity: Value Established, Stakeholders: In-

volved, Requirements: Coherent, Software system: Architec-

ture selected, Team: Collaborating, and Way of working:

Foundation Established.

The main tasks performed in this iteration were establish-

ing and estimating the expected impact with the use of the

tool in academic and business environments, the definition of

the advantages provided by the SEMAT kernel compared to

other agile development methodologies, the definition of the

communication channels with the stakeholder, establishing

the stages when using the application (e.g., setting the initial

state of a project, checking the lists of alphas and others), the

definition of standards for the development of software mod-

ules, the definition of the communication channels between

team members (tools, schedule, repositories, etc.), and the in-

tegration of tools in the development environment.

We completed most of the tasks planned. Although certain

dependencies between tasks prevented a complete success,

the results of this stage were evaluated as positive. It was

achieved the definition of the skinny system and much of the

way of working was coordinated. Additionally, it was suc-

cessfully configured the development environment of the ini-

tial version. The defined scenarios gave an idea of the deliver-

ables to be built, as well as the possible inputs, outputs, and

conditions that must be taken into account when using the

application.

Some of the activities performed in this iteration were not

specifically identified at the beginning but were discussed

through team meetings and stakeholder interventions.

4.2.4.4 Iteration 3

The targets selected for third iteration were: Opportunity:

Viable, Requirements: Acceptable, and Way of working: In

use. The main tasks performed in this iteration were the vali-

dation of the defined requirements, the definition of the con-

tingency plans, assigning priorities to the proposed scenarios

and use cases already defined, making sure that the proposed

solution provides real value for the customer, and gathering

feedback about the tools used and the way of working, in or-

der to be used by the team members.

Other tasks related to the presentation, documentation, de-

sign and development were designing an interface for the

dashboard with the Pencil tool, designing and creating the

DB model, populating the database with static information

(alphas, states, and checklists), and integrating queries for the

database with the primeFaces project.

The tasks were performed satisfactorily, although there

were a lot of dependencies among them. The results of this

stage were difficult to assess since the tasks were focused

primarily on the design and development stages. Thus, there

was no stable version of the system that allows for the team

to show concrete progress.

4.2.4.5 Iteration 4

The timebox set was 3 weeks and the targets selected were:

Software system: Demonstrable and Work: Started. The main

goal was to complete functionality of the application to deliv-

er a skinny system. The functionalities to develop were the in-

tegration of the dashboard, managing the alphas and their dif-

ferent states, the display of the status of a checklist when

selected an alpha, including graphs of alphas, saving the alpha

status, moving the alpha when all their checklist are checked,

saving the current project status, retrieving the status of the

project (alphas, states, and checklists), and loading the posi-

tions of the alphas on the dashboard.

Figure 10 shows one of the checklists viewed from the

dashboard.

Figure 10. Checklist for an alpha state

It was considered that the goals of the iteration were

reached, despite of the difficulties encountered. These diffi-

culties were caused mainly by the accumulation of tasks. The

main goal of achieving the skinny system was successfully

completed according to the definition of that system.

Figure 11 shows the status board of the tool and Figure

12 shows the final state of the fourth iteration.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 87

Figure 11. Status board of the tool

Figure 12. Final state of the fourth iteration

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 88

4.2.5 Difficulties

The adoption of practices and artifacts was initially difficult

because not all members had experience in agile methodolo-

gies. For this reason, the initial planning of the project lasted

more than expected. Having some kind of default set of arti-

facts and practices within the SEMAT framework would be

useful to perform this initial stage of the project.

At the beginning of the project the team had problems de-

ciding when a particular state was reached due to the lack of

full checklists for all the alpha states.

Finally, it is important to emphasize in the gathering of re-

quirements, that you should not always associate a new arti-

fact for each of the requirements of the checklist of alpha

states. This was one of the main difficulties in deciding

whether an alpha state was fulfilled.

4.2.6 Previous experiences

Two team members had extensive knowledge of Scrum and

so they were the guide for iteration planning and the defini-

tion of the way of working. The other two members only had

theoretical knowledge of the agile methodologies. None of

them had previous experience with SEMAT.

As soon as the team learned the fundamentals of the

SEMAT kernel, the members who knew more thoroughly ag-

ile methods realized that SEMAT serves to manage the pro-

ject, manage their resources, and to identify the status of the

project at any time. Despite this, it allows for the team to

choose the specific practices and deliverable artifacts.

5 THE STUDENT STANDPOINT

At the end of the projects, in order to gather the opinions and

thoughts about SEMAT, the students were asked to answer

the three questions below.

 From your own viewpoint, what are the main ad-

vantages of SEMAT?

 Would you use SEMAT for a real software endeavor?

 What are the main drawbacks or deficiencies, if any, of

the SEMAT proposal? Any ideas for improving the

SEMAT approach?

The following sections summarize the responses collected.

5.1 Main advantages of SEMAT

According to the student point of view, there are two salient

features of SEMAT. Firstly, SEMAT allows developers to

identify and show the current state of a software project. The

reason is that the kernel induces the team to think about dif-

ferent perspectives or dimensions of the project by always

measuring project process in alpha states. Simultaneously, the

set of cards provides the team and stakeholders with a novel

and understandable way to represent the status of the project

that visually conveys a lot of information about the software

endeavor. Secondly, the alphas and associated checklists

guide the team throughout the life cycle of the project regard-

less of their nature, and being compatible with any agile

methodology used by the team. Thus, the SEMAT kernel of-

fers developers a framework that allows them to understand

and control both static and dynamic aspects of the software

project.

Another couple of characteristics highlighted by students

are flexibility and extensibility. SEMAT is flexible in the sense

that it is adaptable to any way of working of the team and the

features and technological setting of the project. Extensibility

means that the team can add alphas and their states, practices,

and activities according to specific needs of a software en-

deavor. In this regard, one student noted: “I would definitely

use the SEMAT initiative in developing real software pro-

jects because it offers advantages not offered by any of the

current and traditional methodologies or fads; also, it offers

flexibility in adapting ways of working and practices depend-

ing on software teams and projects features.”

One of the students quoted “I think because of the sim-

plicity of the kernel it will help computer scientists and

stakeholders to build a common understanding of the chal-

lenges in the project in early stages, which might help to

prevent misconceptions and get the programmers to work on

the things the stakeholders really want.” Another one wrote,

“… the kernel is easy to understand, and people, even non-

technical staff, will have a rapid coupling with SEMAT.”

These reviews highlight the simplicity of the SEMAT kernel

and foresee a high degree of acceptance in the business

world.

Within the list of specific advantages mentioned by stu-

dents it is worth emphasizing the support for post-delivery

stages, the ease of use of the set of cards, the support for

team organization and its relationships with the stakeholders,

and also, the way it shows to the team that a software project

involves several dimensions, apart from the code itself.

5.2 Drawbacks and ideas for improving SEMAT

After this initial experience using the SEMAT kernel, the

students suggested that the initiative could be improved in

two ways. In the first place, they would like to see a prede-

fined set of practices that could serve as a basis for inexperi-

enced teams or when the team members have highly dissimilar

backgrounds. Second, the checklists should be initially pro-

vided to inexperienced teams in full format as the short-form

of these checklists might not be self-explanatory. This short

format is more suitable for teams that are already familiar

with SEMAT. This pair of drawbacks reflects difficulties ex-

perienced by students in their first contact with SEMAT and

agile principles, and therefore, is an issue that might suggest

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 89

that, at least in learning contexts, it could be appropriate to

advise teams unfamiliar with SEMAT and agile methods

about the selection and use of agile practices and checklists.

Regarding tool support for SEMAT, one student noted:

“It would be nice to have some software support in order to

minimize the work overload … A web-based platform that

provides something similar to mural.ly but especially built

for the kernel. I think that if such software were built very

well, it might support the use of the kernel in software pro-

jects, even more by giving hints, warnings and references to

a database of similar projects conducted previously, such

that the users can learn from those as examples.” This sug-

gestion is related to the fact that the use of cards is very use-

ful as a teaching tool, but it is not well suited for representing

and tracking the successive states of the project.

As a general remark, the students believe that although it

is unlikely that SEMAT solves all the problems that promise

to solve, it is feasible that this initiative will substantially im-

prove the teaching and practice of software engineering in the

near future.

5.3 Will they use SEMAT in their future projects?

One student pointed out: “I can definitely see myself using

the kernel in the future. But I suppose I will not be in a lead-

ing position in software projects in the near future since I'm

still quite young. But once I have some experience or see that

things are going wrong in a project, I might suggest using

the alpha state cards to establish terminology and a common

understanding of the problems in the project.” Another one

noted: “Of course I will use it. During my short experience

using SEMAT I felt that defining the iterations is fairly easy,

since it controls the scope of each and avoid future incon-

veniences and distractions by focusing on current priorities.

On the other hand, I think that due to the novelty of this ini-

tiative, people involved in the software industry will receive

it in a very good way, because it is new knowledge for them,

easy to understand, fairly visual, and thus, developers will

have rapid coupling with SEMAT.” As a last one example, a

third student noted: “Personally, I really want to apply

SEMAT within projects in which I can participate in the fu-

ture; I find the kernel very useful and I think its proper ap-

plication ensures the successful completion of many pro-

jects.”

The opinions of the students regarding the future use of

SEMAT predict high adoption rates of the Initiative by soft-

ware developers. Similarly, this feedback also indicates that

within the students the SEMAT will provoke great enthusi-

asm.

6 CONCLUSIONS AND FUTURE WORK

In this Chapter we presented a preliminary experience for in-

troducing SEMAT and agile development in a software engi-

neering course. The pedagogical approach aims at providing

the students with practical know-how and skills to successful-

ly cope with technical challenges and non-technical issues that

typically include learning domain specific subjects, working in

a team, organizing the work in short time-boxed iterations

with adaptive, evolutionary refinements of plans and goals.

We also discussed the special circumstances surrounding

software projects developed in an academic context, and pro-

posed alternatives for adapting agile principles to this envi-

ronment. Apart from that, we described a concrete strategy

for adding the SEMAT kernel and language to a project-

based course that has been using agile principles for a long

time. The proposal includes the use of the kernel alphas as a

roadmap that guides teams from the definition of the project,

during the development, until its final presentation at the end

of the course. Similarly, the proposal points out that the al-

phas provide the lecturers with a single conceptual frame-

work that allows them to evaluate and compare projects, as

well as to monitor their progress and health throughout the

course.

We also mentioned a set of online tools suitable for assist-

ing and helping the team to correctly apply the agile principles

for organizing and managing iteration tasks. This includes a

tool for manipulating the deck of cards so that the current

state of the project and the sequence of transitions are easily

recorded and are also accessible for everybody; a tool for

tracking and managing the committed tasks within each itera-

tion of the project or sprint, and a project hosting service that

provides the team with a collaborative development environ-

ment. At the same time, these tools allow for the lecturer to

constantly monitor the progress and health of the project, and

evaluate the teamwork, as well as the individual contributions

of each member.

Finally, we reported the experiences of two software pro-

jects developed as a preliminary pedagogical experiment. The

students used practices and artifacts from the Scrum method

and SEMAT kernel and language as a tool for measuring

progress and planning the work. The experience was de-

scribed as successful by all participating students, who further

highlighted the main advantages of the SEMAT kernel, point-

ed out some drawbacks when using SEMAT in combination

with agile practices, and proposed various ideas for improv-

ing the SEMAT proposal and its usage.

Currently, we are applying this pedagogical approach in a

complete software engineering course in which there are 35

students who are working on 7 projects. We are tracking the

tasks, activities, and meetings of each student team with the

aim of analyzing and reporting our findings in a future publi-

cation. Simultaneously, we are working on a web-based plat-

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Chapter #11, pp. 77–90, ISBN 978-958-775-080-5

 90

form that is going to help software teams to apply the

SEMAT kernel and track all their iterations, states and transi-

tions. This tool would be suitable for instructors not only to

track and evaluate the team work, but also to have a more

accurate view of the impact of the SEMAT framework on ac-

ademic projects.

7 ACKNOWLEDGEMENTS

We express our deepest gratitude to the students who active-

ly participated in the development of the two projects de-

scribed. They allowed us to enrich our knowledge about

SEMAT and contribute to the academic world through this

work.

8 REFERENCES

Alfonso, M. I., & Botia, A. 2005. An Iterative and Agile Pro-

cess Model for Teaching Software Engineering. In 18th

Conference on Software Engineering Education, 9–16.

Bavota, G., De Lucia, A., Fasano, F., Oliveto, R., & Zottoli,

C. 2012. Teaching software engineering and software

project management: An integrated and practical ap-

proach. In 2012 34th International Conference on Soft-

ware Engineering (ICSE), 1155–1164.

Budd, A. J., & Ellis, H. J. 2008. Spanning the gap between

software engineering instructor and student. In Proceed-

ings of the 38th Annual Conference Frontiers in Educa-

tion, 2008. FIE 2008.

Gnatz, M., Kof, L., Prilmeier, F., & Seifert, T. 2003. A prac-

tical approach of teaching Software Engineering. In Pro-

ceedings of the 16
th

 Conference on Software Engineering

Education and Training, 2003. (CSEET 2003), 120–128.

Jacobson, I., Spence, I., & Ng, P.-W. 2013. Agile and

SEMAT: perfect partners. Communications of the ACM,

56(11): 53–59.

Kajko-Mattsson, M., Jacobson, I., Spence, I., McMahon, P.,

Elvesater, B., Berre, A. J., & MacIsaac, M. 2012. Re-

founding software engineering: The Semat initiative. In

Proceedings of the 34th International Conference on

Software Engineering (ICSE), 1649–1650Larman, C.

2003. Agile & Iterative development: A Manager’s

Guide. Addison Wesley.

Muller, M. M. & Tichy, W. F. 2001. Case study: extreme

programming in a university environment. In Proceedings

of the 23rd International Conference on Software Engi-

neering, 2001. ICSE 2001, 537–544.

Ng, P.-W., & Huang, S. 2013. Essence: A framework to help

bridge the gap between software engineering education

and industry needs. In Proceedings of the 2013 IEEE

26th Conference on Software Engineering Education and

Training (CSEE T), 304–308.

Pierce, K. R. 1992. The benefits of maintenance exercises in

project-based courses in software engineering. In Pro-

ceedings of the Conference on Software Maintenance,

324–325.

Rajlich, V. 2013. Teaching developer skills in the first soft-

ware engineering course. In Proceedings of the 2013 In-

ternational Conference on Software Engineering, 1109–

1116. Piscataway, NJ, USA: IEEE Press.

Razmov, V. 2007. Effective pedagogical principles and prac-

tices in teaching software engineering through projects. In

Proceedings of the 37th Annual Education Conference

Frontiers of the Global Engineering: Knowledge Without

Borders, Opportunities Without Passports, 2007. FIE

’07, 21–26.

Shukla, A., & Williams, L. 2002. Adapting extreme pro-

gramming for a core software engineering course. In Pro-

ceedings of the 15th Conference on Software Engineering

Education and Training, 2002. (CSEE T 2002), 184–191.

Zapata, C., & Jacobson, I. 2014. A First Course in Software

Engineering Methods and Theory. Dyna, 81(183): 231–

241.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Capítulo #12, pp. 91–95, ISBN 978-958-775-080-5

1 INTRODUCTION

Learning is an important element that defines the way a

person faces a topic. It can make the object of study easier or

more difficult for someone (Morales et al. 2013). According

to Morales et al. (2013), the most common learning styles

are the traditional theoretical and pragmatic, followed by

active learning. The latter is appealing to the students, since

it allows for them to experience and live their learning.

Software development is still considered as a high risk

activity and the most arduous task for industry. Several

methods have been developed and adapted to the specific

needs found by those who define the method, with the aim of

decreasing risks. This fact has made possible to create and

provide the community with many initiatives intended to

improve the software development process (Jacobson et al.

2012).

On the other hand, the path people follow to create

mechanisms to allow for better resource management and to

obtain profits is also a critical activity that leads to the

creation of many strategies for achieving this goal. One of

them is the proposal of Kiyosaki (2001), with the CashFlow

game, in which daily life difficulties are laid out and the

weaknesses of a poorly financially organized person are

shown.

After comparing both tendencies, it was found that

different methods are created which try to guide the process

in order to improve the results. Nevertheless, it was

concluded that—from any perspective—the basis is always

the organization of processes and that of the stages of each

initiative. The aim is what always changes, but the basis of

the model is always the organization that a person, a team, or

a company possesses to carry out the process.

In this Chapter we introduce the game SoftRace, a

strategy for teaching the player how to establish his/her own

processes inside the SEMAT
1
 kernel framework (Jacobson et

1
 The theoretical framework related to SEMAT is

completely described in the Preface of this book.

al. 2012) by using a CashFlow game (Kiyosaki 2001)

adaptation. The game rules and parts are described here.

With this game, the theoretical and active styles are mixed in

order to help the students master the fundamentals, teaching

them to structure their own software development process.

This Chapter is structured as follows: in Section 2 we

provide a general scope about active learning and CashFlow;

in Section 3 we propose SoftRace as a CashFlow adaptation;

finally, in Section 4 we conclude and state the future work.

2 GENERAL SCOPE

2.1 Active learning

Active learning involves the students in the topic of study

and favors their understanding of concepts. Games are one

way to get students involved in the topic of study. Games

produce a less formal environment and allow for the

participant to be an active member in the learning process

(Morales et al. 2013).

Taking this approach as the basis, the game SoftRace is

introduced here, with which the participant experiences the

importance of having a method and applying good practices

when developing software applications. In addition,

participants should start using their knowledge to create a

strategy leading them to reduce costs and to help their

projects advance, have good quality and satisfy the

stakeholder needs.

2.2 CashFlow

CashFlow game by Kiyosaki (2001) was taken as a basis.

Kiyosaki conceived this game with the aim of improving the

financial education of the players. It allows them to

understand day-to-day financial activity and demonstrates

how lack of planning keeps the player in the Rat Race. Also,

the game shows that if players use their financial resources

properly, they can increase their finances. The Rat Race

makes the player always spend their incomes in cravings

which do not add value to their money.

Chapter #12

SoftRace—the software development race under the SEMAT kernel

W.A. Arévalo Camacho,
Corporación CIDENET, Bogotá, Colombia

J.A. Jiménez Builes & J. Gaviria Giraldo
Universidad Nacional de Colombia, Medellin

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Capítulo #12, pp. 91–95, ISBN 978-958-775-080-5

 92

CashFlow sets out two tracks: one teaches how to take

advantage of financial resources and the other one shows the

profits of that exploitation (see Figure 1). This game helps

players to identify businesses that generate better dividends

in order to enjoy cravings present in the Rat Race, but based

on financial organization (Kiyosaki 2001).

Every track has a format in which incomes and expenses

are recorded and serves as a support in case the players

require a loan either for an opportunity or a craving. Actions

in each track are given by events that take place in a normal

life of a person (Kiyosaki 2001).

Figure 1. Cash flow Board (Kiyosaki 2001)

3 SOFTRACE

As an analogy to CashFlow, when in a company or a

software development team the best practices are not

implemented, processes are not defined, or metrics do not

exist, then risks increase and quality decreases. The aim of

SoftRace is that the player examines how to define and use

methods, by clearly defining process and by executing them.

Thus, the player realizes that being strict with those

conditions substantially reduces the risks in a project and

increases the quality of the product.

3.1 General Rules

The game should be played by a minimum of two and a

maximum of four teams, each made up of minimum one

player. Each team must select one of the projects proposed in

the game framework. There will be a person acting as

moderator, who will also manage the financial resources.

The teams will make an economic proposal, identifying

the tasks to perform and the time they will spend in each

task, the resources they will need, and the total duration of

the project according to the previous items. Those features

will be recorded in a specific format (see Figure 2). The

game moderator will define the market cost per hour and the

monthly payment due for each resource.

There are several cards named opportunity, risk, market

fluctuation, and alpha (see Figure 3), which must be

separated and available face down on the board so that the

players can draw them. The SoftRace board was adapted

from the original CashFlow board as depicted in Figure 4.

We kept two rides: the normal race—we named maturity

race—and the rat race.

Every team receives a project description, which

indicates restrictions for the project and for the team. Some

examples of project descriptions are depicted in Figure 5,

including resources and activities with costs and prices.

Once these conditions are defined, the game can start. To

do so, the players will roll a dice and will move forward

according to the number on the dice. In the maturity board,

the teams will be faced with the possibilities a development

team is faced with every day and in the rat race the game

dynamics is increased.

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Capítulo #12, pp. 91–95, ISBN 978-958-775-080-5

 93

3.2 Game Rules

The project profile card is used for describing the features of

the project, which was assigned to the team, and monitoring

its progress. Every activity and task that will be carried out

should be recorded, with a clear description of what each

consists of and the resources that will be used for the project.

Finally, the project profile indicates the order in which

tasks will be performed and the chronological time each of

them will require in order to finish the activity. The total

estimation of all the tasks in one activity is the estimated

endeavor needed for such activity.

Figure 2. Project Profile

Figure 3. SoftRace cards

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Capítulo #12, pp. 91–95, ISBN 978-958-775-080-5

 94

Figure 4. SoftRace board—adapted from the CashFlow board

Figure 5. Project descriptions

Each team sets up the resources it counts on as a team,

identifying the qualities of each resource according to the

project profile card. This means that if the team has a

software developer, the programming tools it uses and the

kind of training and experience required are defined. Those

data should be recorded in the project profile card (see

Figure 2).

Besides, the value that will be obtained for the project

and the total time that will be spent by adding up all the

resources are also recorded.

Defining the team does not mean that there must be one

player per each defined resource. However, the roles should

Software Engineering: Methods, Modeling, and Teaching, Vol. 3, Capítulo #12, pp. 91–95, ISBN 978-958-775-080-5

 95

be clearly understood in order for the team to be able to carry

out a software development project. Once the initial profile

card recording is fulfilled, the team will receive all the

features of the alphas, and will be allowed the selection of

three alpha cards per each resource, in order to categorize the

team.

Each rolling of the dice represents the number of spaces

the player moves forward, as well as the progress in the time

given to the assigned task in the selected project. Once the

time assigned by the team to each activity is over, the team

should deliver the activity and the moderator will evaluate

whether it was delivered within the agreed deadline and will

give the agreed value for that object to the team. The team

will pay the resources and will record the profit from that

delivery.

Once a team has completed all the alphas from the

endeavor category, it goes to the Fast Track, in which the

development speed is doubled. This means that twice the

number indicated by the dice must be recorded on the project

profile card.

The game is over when one of the teams completes the

project that was assigned to it. In case a team loses liquidity

and does not have enough money to pay for the project

resources when it is due, that team loses one turn and its

project is delayed if it has more projects. In case the team

only has the main project, it loses and is out of the game.

3.3 The Game Card

The board has four different types of cells, which match

the types of cards. The team should take one card that

matches the cell type:

Opportunity: it offers the chance to improve the team,

product, or relationship with the customer.

Risk: it shows the common disadvantages in a project

that cause the team to be delayed or to lose quality of the

product.

Market fluctuation: it could be prize or penalty; the

opportunity to take an additional project, obtain or lose

resources of the project or change the requirements or the

stakeholder.

Alphas: they present the ability that satisfies one feature

of an alpha; the team should match it with its corresponding

alpha. The aim of the game is to complete the alphas to be

able to finish the project.

3.4 Resources

The resources are the staff the team should have to carry

out the project; this is explained to the user, but he/she is

supposed to have an idea about which would be a suitable

team according to the project and the conditions each

resource must have. Nevertheless, in case its liquidity and

estimation allow for the team to obtain another resource, it

may do it.

4 CONCLUSIONS AND FUTURE WORK

This game was tested with some students from the National

University of Colombia and with the employees from a

software development company. Participants found

remarkable the fact that they can realize how the financial

part behaves, and see both the relationship between how

capacity increases when processes are defined and

standardized, and the accuracy of their estimations. This

directly improves their incomes and the profits. In addition,

estimations are carried out based on metrics created from

experience.

If the player does not know the kernel, he/she

understands how the abilities on the cards help to meet the

alpha checklist. Besides, abilities in the game are associated

with those a software engineer needs to have in order to

create a product suitable to the needs of the stakeholder.

The experience behind SoftRace give us the motivation

to promote some other games related to the software

engineering and, particularly, to the SEMAT ideas. We also

need to design an experiment to prove the results we

observed in the game. Finally, the automation of SoftRace

will provide the possibility to share this game with other

SEMAT practitioners and methodologists in the world.

5 REFERENCES

Jacobson, I., Pan-Wei, N., McMahon, P., Spence, I. &

Lidman, S. 2012. The Essence of Software Engineering:
the SEMAT Kernel. Communications of the ACM (10):
42-49.

Jacobson, I., Spence, I & Pan-Wei, N. 2013. Agile and
SEMAT - Perfect Partners. Communications of the ACM
9(11):54-61.

Kiyosaki, R. 2001. Rich dad poor dad. New York: Grand
Central Publishing.

McMahon, P. 2013. SEMAT and SWEBOK: A Perfect
Marriage? SEMAT blog.

Morales, A., Rojas, E., Hidalgo, C., García, R. & Molinar, J.
2013. Relación entre estilos de aprendizaje, rendimiento
académico y otras variables relevantes de estudiantes
universitarios. Revista Estilos de Aprendizaje,
11(12):151-166

This page intentionally left blank

