
KUALI-BEH, Version 1.1 i

Date: August 2012

KUALI-BEH: Software Project
Common Concepts

Revised Submission – Version 1.1

In response to: Foundation for the Agile Creation and Enactment of Software Engineering Methods
(FACESEM) RFP (OMG Document ad/2011-06-26)

OMG Document Number: ad/2012-08-12
__

Submission Team

OMG Submitters:
Universidad Nacional Autónoma de México (UNAM)

Supporting Organizations:
Graduate Science and Engineering Computing, National Autonomous University of Mexico (UNAM)
Science Faculty, National Autonomous University of Mexico (UNAM)
General Direction of Computing and Information Technologies and Communication (DGTIC), National
Autonomous University of Mexico (UNAM)
Alarcos Research Group, University of Castilla – La Mancha (UCLM)
Magnabyte
JPE Consultores
Ultrasist
Software Gurú

ii KUALI-BEH, Version 1.1

Authors of this proposal:
Hanna J. Oktaba, Miguel Ehécatl Morales Trujillo and Magdalena Dávila Muñoz.

LICENSES

Each of the entities listed above: (i) grants to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version, and (ii) grants to each member of the OMG a nonexclusive,
royalty-free, paid up, worldwide license to make up to fifty (50) copies of this document for internal review
purposes only and not for distribution, and (iii) has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used any OMG
specification that may be based here on or having conformed any computer software to such specification.

KUALI-BEH, Version 1.1 iii

Table of Contents

1 SCOPE ... 1

2 CONFORMANCE .. 1

3 NORMATIVE REFERENCES ... 1

4 TERMS AND DEFINITIONS ... 1

5 SYMBOLS .. 2

6 ADDITIONAL INFORMATION ... 2

6.1 CHANGES TO ADOPTED OMG SPECIFICATION ... 2
6.2 HOW TO READ THIS SPECIFICATION ... 2
6.3 SUBMITTING ORGANIZATIONS .. 2
6.4 SUPPORTING ORGANIZATIONS ... 2
6.5 SUBMISSION CONTACTS .. 2
6.6 ACKNOWLEDGEMENTS ... 3
6.7 STATUS OF THE DOCUMENT .. 3
6.8 RESPONSES TO RFP REQUIREMENTS ... 3

7 KUALI-BEH OVERVIEW .. 4

8 KUALI-BEH STATIC VIEW ... 5

8.1 INDUCTION TO SOFTWARE PROJECT COMMON CONCEPTS ... 5
8.2 SOFTWARE PROJECT COMMON CONCEPTS DEFINITIONS ... 6

8.2.1 Software Project Definition ... 6
8.2.2 Method Definition ... 7
8.2.3 Practice Definition ... 7
8.2.4 Method Properties .. 8
8.2.5 Methods and Practices Infrastructure .. 9
8.2.6 Methods and Practices Infrastructure Operations .. 10

8.3 SOFTWARE PROJECT COMMON CONCEPTS TEMPLATES ... 11
8.3.1 Software Project Template Structure .. 11
8.3.2 Method Template Structure .. 12
8.3.3 Practice Template Structure ... 12

8.4 SOFTWARE PROJECT COMMON CONCEPTS GRAPHICAL REPRESENTATION ... 13
8.5 STATIC VIEW EXAMPLE ... 14

9 KUALI-BEH OPERATIONAL VIEW .. 17

9.1 INDUCTION TO SOFTWARE PROJECT EXECUTION .. 17
9.2 PRACTICE INSTANCE LIFECYCLE ... 18
9.3 METHOD ENACTMENT ... 20
9.4 METHOD ADAPTATION ... 22

9.4.1 Practice Notation .. 22
9.4.2 Substitution of Practices ... 23

iv KUALI-BEH, Version 1.1

9.4.3 Concatenation of Practices ... 24
9.4.4 Splitting of Practices ... 24
9.4.5 Merging of Practices ... 25

9.5 METHOD ENACTMENT AND PRACTICE INSTANCE BOARDS ... 26
9.5.1 Method Enactment Board... 26
9.5.2 Practice Instance Board .. 26

9.6 OPERATIONAL VIEW EXAMPLE ... 27

10 KUALI-BEH LANGUAGE .. 30

10.1 ONTOLOGY BACKGROUND .. 30
10.2 ONTOLOGY DEFINITION .. 31

10.2.1 Concept Glossary .. 32
10.2.2 Relationships ... 34
10.2.3 Attributes .. 35

ANNEX A: MANDATORY REQUIREMENTS .. 37

ANNEX B: ISSUES TO BE DISCUSSED ... 41

ANNEX C: PROOF OF CONCEPT STATEMENT .. 44

ANNEX D: DEFINITIONS AND SOURCES CONSIDERED ... 47

ANNEX E: STATIC AND OPERATIONAL VIEWS EXAMPLES ... 52

REFERENCES ... 77

KUALI-BEH, Version 1.1 v

Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-
for-profit computer industry standards consortium that produces and maintains computer
industry specifications for interoperable, portable, and reusable enterprise applications in
distributed, heterogeneous environments. Membership includes Information Technology
vendors, end users, government agencies, and academia.
OMG member companies write, adopt, and maintain its specifications following a mature,
open process. OMG’s specifications implement the Model Driven Architecture® (MDA®),
maximizing ROI through a full-lifecycle approach to enterprise integration that covers
multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include:
UML® (Unified Modeling Language™); CORBA® (Common Object Request Broker
Architecture); CWM™ (Common Warehouse Metamodel); and industry-specific standards
for dozens of vertical markets.
More information on the OMG is available at http://www.omg.org/

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain
frameworks. A Specifications Catalog is available from the OMG website at:
http://www.omg.org/technology/documents/spec_catalog.htm
Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML
• MOF
• XMI
• CWM
• Profile specifications

OMG Middleware Specifications

• CORBA/IIOP
• IDL/Language Mappings
• Specialized CORBA specifications
• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

• CORBAservices
• CORBAfacilities
• OMG Domain specifications
• OMG Embedded Intelligence specifications
• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website.
(Products implementing OMG specifications are available from individual suppliers.)

vi KUALI-BEH, Version 1.1

Copies of specifications, available in PostScript and PDF format, may be obtained from the
Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org
Certain OMG specifications are also available as ISO standards. Please consult
http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.
Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

KUALI-BEH, Version 1.1 1

1 Scope
KUALI-BEH describes the kernel of common concepts involved in software projects and their relationships.
The static view of KUALI-BEH allows the definition of methods and practices that are useful for
organizations dedicated to software development, maintenance or integration. The KUALI-BEH operational
view describes the method enactment during the execution of a software project.

The KUALI-BEH common concepts are applicable to define methods and practices independently of the size
and complexity of the projects, the lifecycle model or the technology used.

Software Engineering practitioners, actively involved in software projects, are the target audience of this
document. Also method engineers, in charge of the existent and recommended working definitions, are
another group who may benefit from this proposal.

2 Conformance
KUALI-BEH is conformant to the 6.5 Mandatory Requirements of A Foundation for the Agile Creation and
Enactment of Software Engineering Methods RFP [1].

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute
provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply:

• A Foundation for the Agile Creation and Enactment of Software Engineering Methods [1].

4 Terms and Definitions
For the purposes of this specification, the terms and definitions given in the normative reference and the
following apply.

BEH
Mayan word meaning way, course or path.

KUALI
Nahuatl word meaning good, fine or appropriate.

MPI
Methods and Practices Infrastructure.

WT
Work Team.

2 KUALI-BEH, Version 1.1

5 Symbols
There are no specific symbols associated with this specification.

6 Additional Information

6.1 Changes to Adopted OMG Specification
There are no specific changes to adopted OMG specifications.

6.2 How to Read this Specification
Section 7 presents an overview of the KUALI-BEH proposal. Section 8 describes the static view that
introduces and defines the kernel of common concepts involved in software projects. An example of the
method and practice definitions is provided. The operational view, focusing on the method enactment during
the execution of a software project, is presented in section 9. This section also includes an example.

The chapters are organized in a logical manner and can be read sequentially.

6.3 Submitting Organizations
The following organizations submitted this specification:

• Universidad Nacional Autónoma de México (UNAM)

6.4 Supporting Organizations
The following organizations and companies supported this specification:

• Graduate Science and Engineering Computing, National Autonomous University of Mexico
(UNAM)

• Science Faculty, National Autonomous University of Mexico (UNAM)
• General Direction of Computing and Information Technologies and Communication (DGTIC),

National Autonomous University of Mexico (UNAM)
• Alarcos Research Group, University of Castilla – La Mancha (UCLM)
• Magnabyte
• JPE Consultores
• Ultrasist
• Software Gurú

6.5 Submission Contacts
• Hanna J. Oktaba, UNAM, hanna.oktaba@ciencias.unam.mx
• Miguel Ehécatl Morales Trujillo, UNAM, migmor@ciencias.unam.mx

KUALI-BEH, Version 1.1 3

6.6 Acknowledgements
The following people contributed valuable ideas and feedback that improved this specification: Mario Piattini
Velthuis, Francisco Hernández Quiroz, María Guadalupe Ibargüengoitia González, Jorge Barrón Machado,
María Teresa Ventura Miranda, Liliana Rangel Cano, Nubia Fernández, María de los Ángeles Sánchez
Zarazua, Luis Daniel Barajas González, Sergio Eduardo Muñoz Siller, Elliot Iván Armenta Villegas, María de
los Ángeles Ramírez, Miguel Ángel Peralta Martínez and José León González.

In addition these people collaborated in one way or another to this specification: Rodrigo Barrera Hernández,
José Luis Urrutia Velázquez, Eraim Ruíz Sánchez, Álvaro Antonio Saldaña Nava, Alberto Tapia, Hugo Rojas
Martínez, Evaristo Fernández Perea and Octavio Orozco y Orozco.

6.7 Status of the Document
This document is a revised specification for a further review and comment by OMG members.

6.8 Responses to RFP Requirements
See Annexes A, B, C, D and E.

4 KUALI-BEH, Version 1.1

7 KUALI-BEH Overview
The KUALI-BEH: Software Project Common Concepts has been developed as a proposal responding to the
RFP A Foundation for the Agile Creation and Enactment of Software Engineering Methods. KUALI-BEH is
based on the knowledge obtained from recognized sources and the experience of the definition of software
development standards [2] [3] [4].

KUALI-BEH is composed of two views: the static and the operational. The KUALI-BEH static and
operational views are the kernel of the software project common concepts.

The static view provides a framework for the definition of the practitioners’ different ways of working. These
ways of working are arranged as methods composed by practices. This knowledge makes up an infrastructure
of methods and practices that can be applied by practitioners.

The operational view is related to the software project execution. This view provides the work team with
mechanisms to enact a method and adapt its practices to the specific context and stakeholder needs.

Figure 1 shows the global structure that makes up the KUALI-BEH proposal.

Figure 1 – KUALI-BEH Static and Operational view

KUALI-BEH, Version 1.1 5

8 KUALI-BEH Static View
KUALI-BEH static view describes the software project common concepts. Section 8.1 presents a general
outline of this view. The software project common concepts definitions are presented in section 8.2. The
concepts templates and graphical representations for practitioners are proposed in sections 8.3 and 8.4
respectively. Finally, section 8.5 shows static view examples.

8.1 Induction to Software Project Common Concepts
KUALI-BEH static view describes common concepts involved in software projects and their relationships.
These common concepts are written in italics.

A software project is an effort of a group of Software Engineering practitioners aiming at developing,
maintaining or integrating software products. Typically a software project is originated by the needs of an
individual or an organization, a stakeholder. The stakeholder needs are expressed to a work team, composed
by practitioners, under some restrictions called project conditions.

While work teams are developing projects, they are creating their own ways of working according to their
own knowledge and skills. These ways of working comprise practices and compose different methods. Thus,
a practice is a set of activities and tasks which has been used repeatedly in software projects and has proven
its usefulness.

A collection of practices can be structured creating a methods and practices infrastructure. The aim of this
infrastructure is to collect and concentrate the existing ways of working as units, which can be consulted and
analyzed by the work team in order to select the appropriate method responding to a particular context of a
software project.

Another goal of the method and practices infrastructure is to foster the addition and modification of practices
and methods in a controlled manner.

Now, let’s review the essential elements required to express the method and practice concepts.

In order to define a method, we have to define its purpose, considering the stakeholder needs characteristics
and the desired software product. In this context, a method pursues a purpose related to developing,
maintaining or integrating a software product. The set of practices that makes up a method should contribute
to the achievement of this purpose.

Each practice has the objective to produce a result originated from an input. The result should accomplish
laid down verification criteria that are evaluated by the practitioner’s judgment. With the aim of evaluating
the performance of a practice, it is advisable to define measures that can be collected during the execution of
the practice.

The inputs and results can be represented as work products, such as documents, diagrams or code, or as
conditions, such as particular situations, for example the stakeholder’s availability to be interviewed.

Each practice contains work guide, that is, a set of activities that transform inputs into results. In addition, the
activities are broken down into particular tasks. The guide can be carried out using particular tools. Applying

6 KUALI-BEH, Version 1.1

the guide in a proper way requires specific knowledge and skills of the practitioners involved in the work
team.

As a whole, the set of practices that comprises a method must be coherent, consistent and complete. In other
words, a set of practices is coherent if the objective of each practice contributes to the entire method purpose.
It is consistent if each of its inputs and results are interrelated and useful. Finally, it is complete if the
achievement of all practice objectives fulfills entirely the method purpose and produces expected software
product.

Figure 17 (section 10) shows the common concepts as a UML class diagram. Each common concept is
represented as a class, and their logical connections as relationships.

8.2 Software Project Common Concepts Definitions
The definitions of KUALI-BEH common concepts and other related terms are presented in this section.

8.2.1 Software Project Definition
A software project is a temporary effort undertaken by a work team using a method in order to develop,
maintain or integrate a software product, responding to specific stakeholder needs and under particular
conditions.

The stakeholder needs, project conditions and, if applies, already existing software products are considered as
the input of a software project. The result is a new, modified or integrated expected software product.

The definitions of the common concept related to software project are presented in the following subsections.

8.2.1.1 Stakeholder
A stakeholder is an individual or organization having a right, share, claim or interest in a software product or
in its possession of characteristics that meet their needs and expectations.

8.2.1.2 Software Product
A software product is the result of a method execution. It may contain a set of computer programs,
procedures, and possibly associated documentation and data. It is a specialization of a work product.

8.2.1.3 Stakeholder Needs
The stakeholder needs are the representation of requirements, demands or exigencies expressed by the
stakeholders to the work team.

8.2.1.4 Project Conditions
The project conditions are the factors related to the project that could affect its realization. Complexity, size,
time and financial restrictions, effort, cost and other factors of the project environment are considered. It is a
specialization of a condition.

8.2.1.5 Work Team
A work team is a group of practitioners that work together in a collaborative manner to obtain a specific goal.
Business experts and other representatives on behalf of a stakeholder can be included in the work team.

KUALI-BEH, Version 1.1 7

8.2.1.6 Practitioner
A practitioner is a professional in Software Engineering that is actively engaged in the discipline. The
practitioner should have the ability to make a judgment based on his or her experience and knowledge.

8.2.2 Method Definition
A method is an articulation of a coherent, consistent and complete set of practices, with a specific purpose that
fulfills the stakeholder needs under specific conditions.

8.2.3 Practice Definition
A practice is work guidance, with a specific objective, that advises how to produce a result originated from an
input. The guide provides a systematic and repeatable set of activities focused on the achievement of the
practice objective and result. The verification criteria associated to the result are used to determine if the
objective is achieved. Particular knowledge and skills are required to perform the practice guide, which can be
carried out optionally using tools. To evaluate the practice performance and the objectives’ achievement,
selected measures can be associated to it. Measures are estimated and collected during the practice execution.

The following subsections present the definitions of the common concept related to practice.

8.2.3.1 Input
An input is defined as expected characteristics of a work product and/or conditions needed to start the
execution of a practice.

8.2.3.2 Result
A result is defined as expected characteristics of a work product and/or conditions required as outputs after
the execution of a practice.

8.2.3.3 Guide
A guide is a set of recommended activities aimed to resolve a specific objective transforming an input into a
result. Particular knowledge and skills are needed to perform the advised activities.
The same practice may be carried out following different guides, but they should accomplish the practice
objective and preserve their input and result characteristics. The tools to support the guide carrying out could
be described optionally.

8.2.3.4 Activity
An activity is a set of tasks that contributes to the achievement of a practice objective.

8.2.3.5 Task
A task is a requirement, recommendation or permissible action.

8.2.3.6 Knowledge and Skills
The knowledge and skills are a set of abilities, competences and attainments, acquired by the practitioner and
needed to perform a practice.

8.2.3.7 Work Product
A work product is an artifact utilized or generated by a practice. It could have a status associated.

8 KUALI-BEH, Version 1.1

8.2.3.8 Condition
A condition is a specific situation, circumstance or state of something or someone with regard to appearance,
fitness or working order that have a bearing on the software project.

8.2.3.9 Tool
A tool is a device used to carry out a particular function.

8.2.4 Method Properties
The set of method practices should preserve the properties of coherency, consistency and completeness to
allow the achievement of a method purpose.

8.2.4.1 Coherent Set of Practices
A set of method practices is coherent if each practice objective contributes to achieve the method purpose.

Figure 2 illustrates a coherent set of practices. Graphical symbol M represents a method and P a practice (see
section 8.4)

Figure 2 – Coherent set of practices

8.2.4.2 Consistent Set of Practices
A set of method practices is consistent if:

• there exists at least one practice which input is similar with the method’s input and at least one
practice which result is similar to the method’s result AND

For each practice of the set:
• its result is similar to the input of another practice AND
• its input is similar to the result of another practice.

Figure 3 illustrates a consistent set of practices.

KUALI-BEH, Version 1.1 9

Figure 3 – Consistent set of practices

8.2.4.2.1 Similar
Two or more elements are similar, if according to the practitioner’s judgment their characteristics are
analogous.

8.2.4.3 Complete Set of Practices
A set of method practices is complete if the achievement of all practice objectives fulfills entirely the method
purpose and each of the practice result is used as an input of another practice or is a result of the method.

Figure 4 illustrates a complete set of practices.

Figure 4 – Complete set of practices

8.2.5 Methods and Practices Infrastructure
The methods and practices infrastructure (MPI) is a set of methods and practices learned by the organization
members by experience, abstraction or apprehension. This base of knowledge is continuously expanded and

10 KUALI-BEH, Version 1.1

modified by the practitioners. It can contain methods, practices organized as families, individual practices or
practice patterns.

The methods and practices infrastructure is used by the work teams as a source of proven organizational
knowledge to define the software projects way of working. It can also be useful in training new practitioners
incorporated into the organization.

8.2.5.1 Family of Practices
A family of practices is a group of practices that shares an objective. Each of the practices belonging to the
family of practices achieves the same objective. Also, the practices can be grouped by inputs or results.

8.2.5.2 Practice Patterns
A pattern is a set of practices that can be applied as a general reusable solution to a commonly occurring
problem within a given context.

8.2.6 Methods and Practices Infrastructure Operations

8.2.6.1 Composition
Composition of practices consists in putting together practices in order to make up a method with a specific
purpose, to form a family with a particular objective or to create a pattern as a reusable solution.

The practices are taken from MPI and organized according to the practitioner’s judgment. The composition
operation can also be applied to methods, families of practices and practice patterns.

Figure 5 illustrates the composition of practices to make up a method.

Figure 5 – Practices composition

8.2.6.2 Modification
A practice modification consists in the adjustment or change, done by a practitioner, to a component of a
practice. The modification could be applied to an input, result, objective, guide or any other element that is a
part of a practice.

The modification operation can also be applied to methods, practices organized as families, individual
practices and practice patterns.

KUALI-BEH, Version 1.1 11

Figure 6 illustrates the modification of a practice.

Figure 6 – Practice modification

8.3 Software Project Common Concepts Templates
The methods and practices infrastructure and its content are extensible and adaptable in order to support the
needs of a wide variety of methods and practices and to allow flexibility in the definition and application of
these methods by practitioners in a work team.

Practitioners can use a set of templates to extend the methods and practices infrastructure and to register
software projects’ basic information. The templates are expected to be filled in when the common concepts
are instantiated. The templates to capture particular software project information and definitions of method
and practices are provided.

8.3.1 Software Project Template Structure
Practitioners can instantiate the software project common concept using the template shown in Table 1. The
template includes the information and data required by the software project concept.

Table 1 — Software Project template

12 KUALI-BEH, Version 1.1

8.3.2 Method Template Structure
Practitioners can instantiate the method common concept using the template shown in Table 2. The template
asks for the information and data required by the method concept. These data have to be collected by the
practitioners according to their experience and knowledge. The filled in template will be stored in the
organizational methods and practices infrastructure.

Table 2 — Method template

8.3.3 Practice Template Structure
Practitioners can instantiate the practice common concept using the template shown in Table 3. The template
asks for the information and data required by the practice concept. These data have to be collected by the
practitioners according with their experience and knowledge. The filled in template will be stored in the
organizational methods and practices infrastructure.

[identifier] Method
[name]

Purpose
[purpose]

Input Result
[stakeholder needs, project conditions,…]

[software product,…]

Practices
[practiceRequirements,
…,
practiceDelivery, …]

KUALI-BEH, Version 1.1 13

Table 3 — Practice template

8.4 Software Project Common Concepts Graphical
Representation
A graphical representation of the software project common concepts is proposed in this section. This
representation is meant to be used specifically by practitioners. It will be used by a work team mainly to
manipulate defined methods and practices, not to define them.

Figure 7 shows the software project representation as letter J.

Figure 7 – Project symbol

The letter M is used to represent graphically a method, together with its input and result. See Figure 8.

14 KUALI-BEH, Version 1.1

Figure 8 – Method symbol

The letter P is used to represent a practice, its input and result. See Figure 9.

Figure 9 – Practice symbol

The aim of these graphical symbols is to facilitate the representation and manipulation of the previously
defined and instantiated common concepts. These symbols are proposed to be used during work team
discussions and facilitate their comprehension. These graphical symbols can be adjusted and improved by the
practitioners.

8.5 Static View Example
To illustrate the use of the KUALI-BEH practice template, the Daily Scrum Meeting event was chosen (see
Table 4). The content of the practice is based on The Scrum Guide -The Definitive Guide to Scrum: The Rules
of the Game [13], developed and sustained by Ken Schwaber and Jeff Sutherland. The remaining Scrum
events practice templates can be found in Annex E.

KUALI-BEH, Version 1.1 15

Table 4 — Daily Scrum Meeting practice

To illustrate how the KUALI-BEH method template can be used, the Software Implementation process
activities of the ISO/IEC 29110 5-1-2 Basic profile were chosen (see Table 5). The complete definition of the
NewSoftDev practice templates can be found in Annex E.

16 KUALI-BEH, Version 1.1

Table 5 — NewSoftDev method

KUALI-BEH, Version 1.1 17

9 KUALI-BEH Operational View
KUALI-BEH operational view describes the software project execution. Section 9.1 presents a general outline
of this view. The practice instance lifecycle is presented in section 9.2. The method enactment and adaptation
during a software project execution are described in section 9.3 and 9.4 respectively. A method and practice
instance boards for practitioners are proposed in section 9.5. Finally, section 9.6 shows an operational view
example.

9.1 Induction to Software Project Execution
The KUALI-BEH operational view expresses the enactment of a method by a work team during a software
project execution. The method enactment implies changes of the method and its practice instances states. New
terms related to the states of method and practice instances are written in bold.

A new software project starts when the work team gets to know the stakeholder needs and is informed about
the project conditions. In the case of a maintenance or software integration project, the already existent
software product(s) should also be available.

At the beginning of the project, the work team selects a method from the organizational practice and method
infrastructure according to the general characteristics of the project. In order to perform successfully the
selected method, the work team has to fulfill the knowledge and skills requirements specified in the practices
guide. If it is not the case, appropriate training is recommended.

The selected method usually has to be adapted in accordance with stakeholder needs and project conditions.

The purpose of adapting a method is to identify work units to be done during the software project execution.
To reach this goal, the work team has to analyze the practices of the selected method and, if necessary, apply
the practice substitution, concatenation, splitting or merging. In other words, one practice can be substituted
by an equivalent one (substitution), two practices can be juxtaposed (concatenation), one practice can be
divided into two practices (splitting) or two practices can be integrated in one (merging).

The consistency, coherence and completeness properties of the original set of practices have to be preserved.
The resulting set of practices is instantiated as work units planned to be executed during the project. Each
practice instance work unit requires following the practice guide. As a result, the method changes to the
adapted state.

When a required input is available, the work team assigns it to the appropriate practice instance. The practice
instance, with an assigned input, changes to a can-start state. When at least one practice is in a can-start
state, the method reaches a ready-to-begin state.

To start the practice instance execution, the work team has to estimate the measures associated to the practice,
agree on the work distribution, on who is responsible for it and begin to work. This means that the practice
instance changes to an in-execution state and the method enactment changes to an in-progress state.

During the practice instance execution, the work team can decide to interrupt it, so the practice instance
changes to a stand-by state. At some point, the work team can decide to restart and the practice instance
changes again to an in-execution state.

18 KUALI-BEH, Version 1.1

The practice instance execution produces a result, which should be verified by the work team using result
verification criteria. At this moment the practice instance changes to an in-verification state.

If the work team verifies the result as correct, the practice instance is finished. If it is not the case, the work
team should correct the result and the practice instance goes back again to the in-execution state. In some
cases, the work team can decide to cancel the practice instance. If the practice is finished or cancelled, the
measures associated to the practice should be collected.

The method enactment can change to a progress-snapshot state whenever the work team produces a verified
result, cancels a practice instance, or changes to the stakeholder needs or the project conditions occur. In this
state, the work team has to analyze the situation and decide to take one of the following actions:

• Assign available input to the existing practice instance and continue the enactment of the method;
• Apply adaptation of method practices; taking into account the practice instance cancelation, the

stakeholder needs change requests, the changes to the project conditions, or anything else that can
affect the project.

Lastly, the method enactment can be cancelled, if the work team decides so, or finished, if the expected
software product is produced and all the practice instances are finished or cancelled.

9.2 Practice Instance Lifecycle
During the enactment of a method by a work team (WT), each practice is initially instantiated, later is
constantly changing its state until it is finished or canceled. The valid practice instance states during their
lifecycle are shown in Table 6.

Table 6 — Practice instance lifecycle states

Practice Instance State Definition

Instantiated The practice instance is created as a result of the method adaptation.
Optionally, measures can be estimated.

Can-Start The required input has been assigned to the practice instance and it can
start at any time.

In-Execution
The practice instance has been chosen, its measures have been
estimated and WT has agreed who is responsible for it. The guide
associated with the practice instance is being carried out.

Stand-By The practice instance execution has been interrupted, its associated
items remain paused.

In-Verification The practice instance result is being verified against the verification
criteria.

Cancelled The practice instance is over, WT has quit its associated items.
Finished The practice instance is over and its result has been produced correctly.

The transitions between practice instance states are described in Table 7.

KUALI-BEH, Version 1.1 19

Table 7 — Practice instance lifecycle transitions

From Practice Instance
State

Event that causes the transition To Practice Instance State

Instantiated

WT assigns work products and/or
conditions, which meet the required
practice input characteristics. Optionally
WT can estimate the practice
measures.

Can-Start

Can-Start
WT chooses a practice instance,
estimates the practice measures,
agrees who is responsible for it and
starts its execution.

In-Execution

In-Execution WT decides to interrupt the practice
instance execution. Stand-By

In-Execution
WT decides to verify the result
produced by the practice instance
execution.

In-Verification

In-Execution WT decides to cancel the practice
instance execution. Cancelled

Stand-By WT decides to restart the practice
instance execution. In-Execution

In-Verification

WT realizes that the work products or
conditions do not meet the result
verification criteria and corrections to
them are required. WT verifies them as
incorrect.

In-Execution

In-Verification
WT confirms that the generated work
products and/or reached conditions
meet the result verification criteria. WT
verifies them as correct.

Finished

Figure 10 shows the state diagram that represents the practice instance lifecycle.

Figure 10 – Practice instance states and transitions

20 KUALI-BEH, Version 1.1

9.3 Method Enactment
A method enactment occurs in the context of a software project execution. Before starting the method
enactment, the assigned to the software project work team gets to know the stakeholder needs and is informed
about the software project conditions. In case of a maintenance or software integration project, the already
existent software product(s) should also be available.

The valid states of a method enactment, done by a work team during the project execution, are shown in Table
8.

Table 8 — Method enactment states

Method Enactment State Definition

Selected

 The method has been selected from the organizational methods and practices
infrastructure according to general characteristics of a project (new development,
maintenance or integration). The WT members have to fulfill the required knowledge
and skills specified in the method practices guides. If it is not the case, appropriate
training is needed.

Adapted The method has been adapted and the resulting set of practices is instantiated as work
units planned to be executed during the project.

Ready-to-Begin The method has at least one practice instance in Can-Start state. The method is ready
to begin at any time.

In-Progress The method has at least one practice In-Execution, Stand-By or In-Verification
states. The method remains in this state while it is being applied.

Progress-Snapshot The method context is being analyzed and under discussion in order to take actions.
Cancelled The method is over and its result has not been produced.
Finished The method is over and its result can be delivered.

KUALI-BEH, Version 1.1 21

The transitions between method enactment states are described in Table 9.

Table 9 — Method enactment transitions

From Method Enactment
State

Event that causes the transition To Method Enactment State

Selected

WT adapts the selected method, taking into
account stakeholder needs and project
conditions. WT analyzes the selected method
practices and, if necessary, applies the
practice substitution, concatenation, splitting or
merging. For each practice of the adapted
method the practice instances are created and,
optionally, the practices measures estimated.

Adapted

Adapted WT assigns an input to at least one practice
instance. Ready-to-Begin

Ready-to-Begin
WT chooses a practice instance in Can-Start
state, estimates the measures associated to it,
agrees on work distribution, on who is
responsible for it and begins its execution.

In-Progress

In-Progress WT verifies a result or decides to pause the
execution of a practice instance. In-Progress

In-Progress
WT produces a verified result and collects
measures; or WT cancels a practice instance
and collects measures; or changes occur in
stakeholder needs or project conditions.

Progress-Snapshot

Progress-Snapshot
WT assigns available inputs to the existing
practice instances, that changes their states to
the Can-Start state.

Ready-to-Begin

Progress-Snapshot

WT applies method practices adaptation,
taking into account the practice instance
cancelation, the changes in stakeholder needs
and/or project conditions, or anything else that
can affect the project. As a result, new
practices are Instantiated.

Adapted

Progress-Snapshot WT decides to stop the method permanently. Cancelled

Progress-Snapshot
WT produces the expected method result and
all of the practice instances are in the
Finished or Cancelled states.

Finished

The method enactment can reach more than one state at the same time, caused by the behavior of the practice
instances lifecycle. For example, in some moment, a group of practice instances can be in execution state,
other practices in can start state and others are finished, causing that the method enactment reaches different
states at the same time. So, the method enactment behavior can be represented as a variation of a non-
deterministic finite-state machine.

Figure 11 shows the diagram of possible states of the method enactment.

22 KUALI-BEH, Version 1.1

Figure 11 – Enactment of a method

9.4 Method Adaptation
Method adaptation is the action done by the work team taking into account the stakeholder needs and their
changes, the project conditions and other factors that could affect a software project.

The purpose of adapting a method is to identify and/or modify the work units need to be done during the
software project execution. To reach this goal the following actions should be done:

• WT has to analyze the practices of the selected method or the remaining practice instances and, if
necessary, apply the practice substitution, concatenation, splitting or merging.

• The resulting set of practices is instantiated as work units planned to be executed during the software
project. Each of the practice instances involves following the practice guide.

The practice substitution, concatenation, splitting and merging are defined in the next subsections.

9.4.1 Practice Notation
Let’s define a practice P as a triple formed by an Input (I), an Objective (O) and a Result (R)

(), ,P I O R=

KUALI-BEH, Version 1.1 23

9.4.2 Substitution of Practices
The substitution of practices consists in replacing a practice by another equivalent practice.

() ()1 1 1 1 2 2 2 2

1 2

1 2

Let , , and , , practices,
can be by if and only if:

 is equivalent to

P I O R P I O R
P substituted P

P P

= =

The equivalence between practices holds when similar results are reached starting from similar inputs and
similar objectives are fulfilled.

A practice is to a practice ' if and only if:
 is similar to ' and
 is similar to ' and
 is similar to O '

P equivalent P
I I
R R
O

Notice that similarity is recognized and dictated by the practitioner’s judgment.

Figure 12 illustrates the substitution of a practice.

Figure 12 – Practice substitution

The original properties of the method after adaptation are preserved, because of the fact that the new practice
holds an objective, input and result similar to the substituted practice.

24 KUALI-BEH, Version 1.1

9.4.3 Concatenation of Practices
If one practice has a result similar to the input of another practice, both can be integrated into one practice,
applying the concatenation operation. The resulting objective will be the union of both original objectives.

Formally, the concatenation operation is defined as follows:

() ()

()

1 1 1 1 2 2 2 2

1 2

3 1 2

3 1 1 2 2

Let , , and , , practices
and similar to .
A practice is a correct of the practices and if:

, and ,

P I O R P I O R
R I

P concatenation P P
P I O O R

= =

=

The concatenation operation can be applied as many times as required.

Figure 13 illustrates the concatenation of practices.

Figure 13 – Practice concatenation

9.4.4 Splitting of Practices
A practice splitting consists in the partition of the original practice into two different practices preserving the
original objective accomplishment and similar inputs and results.

Formally, the splitting operation is defined as follows:

() ()
()

1 1 1 1 2 2 2 2

1 2

1 2

1 2

1 2

Let , , and , , practices.

 and are a correct of , , if:
 union is similar to and
 union is similar to and
 and

P I O R P I O R

P P split P I O R
I I I
R R R
O O O

= =

=

=

Figure 14 illustrates the splitting of a practice.

KUALI-BEH, Version 1.1 25

Figure 14 – Practice splitting

9.4.5 Merging of Practices
A practice merging consists in bringing two different practices into one. The resulting practice preserves the
original objectives accomplishment and an integrated guide. The integrated guide is formed by the activities
of both original practices merged into a new one.

Formally, the merging operation is defined as follows:

() ()
()

1 1 1 1 2 2 2 2

1 2

1 2

1 2

1 2

Let , , and , , practices.

, , is a correct of and if:
 is similar to union and
 is similar to union and

 and

P I O R P I O R

P I O R merge P P
I I I
R R R
O O O

= =

=

=

If operations of practice substitution, concatenation, splitting and merging are applied strictly following the
mentioned rules, the original properties of the method coherency, consistency and completeness are
preserved.

Figure 15 illustrates the merging of practices.

Figure 15 – Practice merging

26 KUALI-BEH, Version 1.1

9.5 Method Enactment and Practice Instance Boards
During the execution of a project, the work team needs to visualize the project´s on-going performance. The
method enactment and the practice instance boards are used to display project relevant information. In the
next subsections each board is presented in detail.

9.5.1 Method Enactment Board
The method enactment board communicates method states mainly. The practice instances, organized by state,
are associated to method enactments states. Optionally, responsible and reporting date can be added in each
practice instance row. A numerical value can be assigned to each practice instance state in order to calculate
the global progress of the method enactment.

A section for work products and/or conditions used by the practice instances paired with their respective
status is also optional. Table 10 shows a proposed board for the method enactment.

Table 10 — Method enactment board

9.5.2 Practice Instance Board
The practice instance board reflects the practice state at one particular moment. Each practice instance board
also represents the responsible for it work team and associated to it measures. A numerical value together

KUALI-BEH, Version 1.1 27

with the estimated and actual start and end dates can be associated to each practice instance state in order to
calculate its progress. Table 11 shows a proposed board for practice instances.

Table 11 — Practice instance board

9.6 Operational View Example
The KUALI-BEH graphical practice symbols can be used to represent the planned practice instances and their
input – result dependencies during the method enactment. Figure 16 shows the example.

Figure 16 – Example of the adapted practices instances of NewSoftDev method

Table 12 shows the example of a practice instance board in In-Execution state.

28 KUALI-BEH, Version 1.1

Table 12 — SRA1 instance board in In-Execution state

Table 13 shows the example of a method enactment board. A more detailed example of the method
enactment in the context of specific project is presented in Annex E.

KUALI-BEH, Version 1.1 29

Table 13 — Example of the NewSoftDev method enactment board

DistEdSoft-NewSoftDev Method Enactment Board 02/07/2011 08/15/2011
Input Result 118 days left.
Stakeholders product needs: DistEdSoft Software Configuration

- Requirements Specification
- Software Design
- Software Components Software
- Test Cases and Test Procedures
- Test Report
- Maintenance Documentation

Statement of Work
General customer requirements:

R1. Enrollment.
R2. On-line courses.
R3. Student support.
R4. Graduate exams.

Project conditions:
Project conditions established by the customer

C1. Enrollment and On-line courses are the highest
priority requirements.

C2. Delivery deadline of the highest priority
requirements cannot be changed.

Enactment States
 Adapted Ready to Begin In Progress Progress Snapshot Global

Progress Instantiated
20%

Can Start
40%

In Execution
60%

In Verification
80%

Stand By
N/A

Cancelled
N/A

Finished
100%

1st. increment

1 SRA1 100

2 ADD1 60

3 TCTPE1 60

4 SC1 20

5 SIT1 20

6 PD1 20

2nd. Increment

7 SRA2 20

8 SADD2 20

9 SC2 20

10 SIT2 20

11 PD2 20

Total 380/1100
 Work Product / Conditions
 Statement of Work (R1, R2, R3 and R4) –Agreed

Requirements Specification (R1, R2) -Validated

30 KUALI-BEH, Version 1.1

10 KUALI-BEH Language
KUALI-BEH language is an initial approach to share a common representation of knowledge, as a set of
concepts, attributes and relationships, of a domain in the form of ontology. This ontology is supposed to be
used by the method engineers as the means of description, analysis and reasoning about software projects and
the information related to them. Section 10.1 presents a general background and the KUALI-BEH ontology
requirements specification. The KUALI-BEH ontology definition is presented in section 10.2.

10.1 Ontology Background
The KUALI-BEH ontology has been developed using the Representation Formalism for Software
Engineering Ontologies (REFSENO) [10]. It is important to realize that the ontologies defined using
REFSENO serve the purpose of software knowledge management and not as the basis for the implementation
of intelligent assistants [10].

REFSENO provides constructs to define concepts with their attributes and the relationships between them.
REFSENO is based on the construction of three tables using text and, optionally, diagrams. The tables contain
a glossary of concepts, attributes and relationships respectively. REFSENO allows definition of cardinalities
for the relationships and value ranges for the attributes.

The specification of an ontology should contain the domain modeled, the purpose of the ontology, the scope,
and administrative information like the authors and knowledge sources [10]. Table 14 defines the KUALI-
BEH ontology requirements specification.

KUALI-BEH, Version 1.1 31

Table 14 — Ontology Requirements Specification

KUALI-BEH Ontology Requirements Specification
Domain Software Projects

Date June 23, 2012
Conceptualized by Miguel Morales Trujillo and Hanna Oktaba.

Purpose Describe the common concepts involved in software projects and their
relationships.

Level of Formality Semi-formal (UML Diagrams, text and tables REFSENO).

Scope

List of concepts:
• Software Project
• Methods and Practices Infrastructure
• Pattern
• Method
• Practice
• Guide
• Activity
• Task
• Tool
• Input
• Result
• Condition
• Work Product
• Work Team
• Practitioner
• Knowledge and Skills
• Stakeholder
• Project Conditions
• Stakeholder Needs
• Software Product

Instances: none
Attributes:

• Purpose (Method)
• Objective (Practice)
• Verification Criteria (Practice)
• Measures (Practice)
• Status (Work Product)

Source of Knowledge See References section.

10.2 Ontology Definition
After establishing the ontology requirements specification, REFSENO suggests a process model for
developing the ontology itself. Therefore, the suggested process model and a UML class diagram have been
used to develop the KUALI-BEH ontology. Note that for the purpose of this proposal, a reduced version of
REFSENO is used in order to maintain it readable and easy to assimilate.

The resulting ontology consists of a graphical representation based on UML and a textual semi-formal
representation of knowledge based on REFSENO. Figure 17 shows the UML class diagram used to develop
the ontology.

32 KUALI-BEH, Version 1.1

Figure 17 – Software project common concepts and their relationships and attributes

10.2.1 Concept Glossary
The concept glossary lists alphabetically all concepts of the ontology. One row of the concept glossary
corresponds to one concept. The columns are labeled Name, Definition, Example and References, denoting
the respective components of the concept definition. The References column indicates the section of Annex D
where the sources considered and used to create the respective definition are located.

Table 15 presents the glossary of concepts that form the KUALI-BEH ontology.

Table 15 — Ontology Glossary of Concepts

KUALI-BEH Ontology Concepts Glossary
Name Definition Example References

Activity An activity is a set of tasks that contributes to the
achievement of a practice objective.

SI.2.2 Document or update
the Requirements
Specification.

D.13

Condition
A condition is a specific situation, circumstance or
state of something or someone with regard to
appearance, fitness or working order that have a
bearing on the software project.

The team is working together
and every member of the
team is in context for the
coming day’s work.

D.17

Guide

A guide is a set of recommended activities aimed to
resolve a specific objective transforming an input into
a result. Particular knowledge and skills are needed
to perform the advised activities.
The same practice may be carried out following
different guides, but they should accomplish the
practice objective and preserve their input and result
characteristics. The tools to support the guide
carrying out could be described optionally.

SI.2.1 Assign Tasks to the
Work Team members in
accordance with their role,
based on the current Project
Plan.
SI.2.2 Document or update
the Requirements
Specification.
SI.2.3 Verify and obtain

D.12

KUALI-BEH, Version 1.1 33

KUALI-BEH Ontology Concepts Glossary
Name Definition Example References

approval of the
Requirements Specification.

Input
An input is defined as expected characteristics of a
work product and/or conditions needed to start the
execution of a practice.

Description of work to be
done:
 - Product Description
 - General Customer
requirements
 - Scope description of what
is included and what is not
- Deliverables list of products
to be delivered to Customer.

D.10

Knowledge and
Skills

The knowledge and skills are a set of abilities,
competences and attainments, acquired by the
practitioner and needed to perform a practice.

- Experience eliciting
requirements
- Experience in designing
user interfaces
- Knowledge of the revision
techniques.

D.15

Method
A method is an articulation of a coherent, consistent
and complete set of practices, with a specific
purpose that fulfills the stakeholder needs under
specific conditions.

Software Implementation D.8

Methods and
Practices

Infrastructure

The methods and practices infrastructure (MPI) is a
set of methods and practices learned by the
organization members by experience, abstraction or
apprehension. This base of knowledge is
continuously expanded and modified by the
practitioners. It can contain methods, practices
organized as families, individual practices or practice
patterns.
The methods and practices infrastructure is used by
the work teams as a source of proven organizational
knowledge to define the software projects way of
working. It can also be useful in training new
practitioners incorporated into the organization.

KB-MPI D.19

Pattern
A pattern is a set of practices that can be applied as
a general reusable solution to a commonly occurring
problem within a given context.

Kritarchy Pattern D.20

Practice

A practice is work guidance, with a specific objective,
that advises how to produce a result originated from
an input. The guide provides a systematic and
repeatable set of activities focused on the
achievement of the practice objective and result. The
verification criteria associated to the result are used
to determine if the objective is achieved. Particular
knowledge and skills are required to perform the
practice guide, which can be carried out optionally
using tools. To evaluate the practice performance
and the objectives’ achievement, selected measures
can be associated to it. Measures are estimated and
collected during the practice execution.

Software Requirements
Analysis D.9

Practitioner

A practitioner is a professional in Software
Engineering that is actively engaged in the discipline.
The practitioner should have the ability to make a
judgment based on his or her experience and
knowledge.

Hanna, Miguel D.7

Project Conditions

The project conditions are the factors related to the
project that could affect its realization. Complexity,
size, time and financial restrictions, effort, cost and
other factors of the project environment are
considered. It is a specialization of a condition.

KB-Project-Conditions D.5

34 KUALI-BEH, Version 1.1

KUALI-BEH Ontology Concepts Glossary
Name Definition Example References

Result
A result is defined as expected characteristics of a
work product and/or conditions required as outputs
after the execution of a practice.

Requirements description:
 - Functionality
 - User interface
 - External interfaces
 - Legal and regulative
Each requirement is
identified, unique and it is
verifiable or can be
assessed.

D.11

Software Product

A software product is the result of a method
execution. It may contain a set of computer
programs, procedures, and possibly associated
documentation and data. It is a specialization of a
work product.

KB-System D.3

Software Project

A software project is a temporary effort undertaken
by a work team using a method in order to develop,
maintain or integrate a software product, responding
to specific stakeholder needs and under particular
conditions.
The stakeholder needs, project conditions and, if
applies, already existing software products are
considered as the input of a software project. The
result is a new, modified or integrated expected
software product.

KB-Project D.1

Stakeholder
A stakeholder is an individual or organization having
a right, share, claim or interest in a software product
or in its possession of characteristics that meet their
needs and expectations.

The Client D.2

Stakeholder
Needs

The stakeholder needs are the representation of
requirements, demands or exigencies expressed by
the stakeholders to the work team.

The Client Needs D.4

Task A task is a requirement, recommendation or
permissible action.

SI.2.2.1 Identify and consult
information sources
(Customer, users, previous
systems, documents, etc.) in
order to get new
requirements.

D.14

Tool A tool is a device used to carry out a particular
function. Enterprise Architect D.18

Work Product A work product is an artifact utilized or generated by
a practice. It could have a status associated. Requirements Specification D.16

Work Team

A work team is a group of practitioners that work
together in a collaborative manner to obtain a
specific goal. Business experts and other
representatives on behalf of a stakeholder can be
included in the work team.

KB-WT D.6

10.2.2 Relationships
A relationship models the way in which a particular software engineering entity is related to other software
engineering entities. The relationships are labeled as follows: Name, Concepts (Cardinality) and Description.
The relationships of this ontology are equivalent to the non-terminal concept attributes defined in REFSENO.

Table 16 presents the relationships that form the KUALI-BEH ontology.

KUALI-BEH, Version 1.1 35

Table 16 — Ontology Relationships

KUALI-BEH Ontology Relationships
Name Concepts (Cardinality) Description

Assigned to Work Team (*) – Software
Project (*)

A work team is assigned to a software project.

Carries out Tool (*) – Guide (*) A tool carries out a guide.

Composed of Methods and Practices
Infrastructure (*) – Pattern (*)

A methods and practices infrastructure is composed of
patterns.

Composed of Methods and Practices
Infrastructure (*) – Method (*)

A methods and practices infrastructure is composed of
methods.

Composed of Methods and Practices
Infrastructure (*) – Practice (*)

A methods and practices infrastructure is composed of
practices.

Conformed of Work Team (*) – Practitioner
(*)

A work team is conformed of practitioners.

Contains Method (*) – Practice (*) A method contains practices.
Contains Practice (1) – Guide (*) A practice contains a guide.

Determine Stakeholder Needs (*) –
Software Project (*)

Stakeholder needs determine a software project.

Fits Work Product (*) –Input (*) A work product fits an input.
Fits Work Product (*) – Result (*) A work product fits a result.
Has Guide (*) – Activity (*) A guide has activities.
Has Activity (*) – Task (*) An activity has tasks.
Is Condition (*) – Input (*) A condition is an input.
Is Condition (*) –Result (*) A condition is a result.

Possesses Work Team (*) – Knowledge
and Skills (*)

A work team possesses knowledge and skills.

Produced by the end of Software Product (*) –
Software Project (1)

A software product is produced by the end of a software
project.

Produces Practice (*) – Result (*) A practice produces a result.

Requires Guide (*) – Knowledge and
Skills (*)

A guide requires knowledge and skills.

Restrict Project Conditions (*) –
Software Project (*)

Project conditions restrict a software project.

Sets up Stakeholder (*) – Project
Conditions (*)

A stakeholder sets up project conditions.

Sets up Stakeholder (*) – Stakeholder
Needs (*)

A stakeholder sets up stakeholder needs.

Sets up Stakeholder (*) – Software
Product (*)

A stakeholder sets up software product.

Uses Software Project (*) – Method
(*)

A software project uses a method.

Uses Practice (*) – Input (*) A practice uses an input.

10.2.3 Attributes
An attribute is represented using the concept attribute table. The concept attribute table is concept-specific
and contains one row for every attribute. The columns are labeled as follows: Name, Description, Mandatory,
Type and Cardinality. The attributes of this ontology are equivalent to the terminal concept attributes defined
in REFSENO.

Table 17 presents the attributes that form the KUALI-BEH ontology.

36 KUALI-BEH, Version 1.1

Table 17 — Ontology Attributes

KUALI-BEH Ontology Attributes
Attribute (of Concept) Description Mandatory Type Cardinality

Measures (Practice)
List of standard units used to evaluate the
practice performance and the objectives’

achievement.

No Text 1..*

Objective (Practice) Description of the goal that a practice
pursues.

Yes Text 1

Purpose (Method) Description of the goal that a method
pursues.

Yes Text 1

Status (Work Product) Description of the actual state or situation
of a work product.

No Text 1

Verification Criteria
(Practice)

List of criteria associated to a result used
to determine if a particular objective is

achieved.

Yes Text 1..*

KUALI-BEH, Version 1.1 37

Annex A: Mandatory Requirements
(Informative)

KUALI-BEH proposal satisfies the specific requirements stated in Chapter 6 of [1]. Table 18 presents the
rationale to support the statement. Check the specific section marked in parenthesis; besides, feel free to
contact any of the submission authors for further information about this issue.

Table 18 — Mandatory requirements and correspondent sections

6.5 Mandatory Requirements

6.5.1 The Kernel
6.5.1.1 Domain model

The KUALI-BEH proposal is represented as a domain model of 20 essential concepts
of software engineering, their attributes and relationships.

KUALI-BEH includes the definition of each concept (8.2). The concepts are
considered common for software projects because they were identified through
concepts generalization found in models and standards related to software
development. Moreover, these concepts have been used in several projects observed
along the 30 years of academic and industry experience.

The following projects support the experience of one of the authors and has
contributed to define the concepts of KUALI-BEH:

• MoProSoft: The process reference model for Mexican software organizations
was published in 2003. In 2005 was declared as national standard NMX-I-
059-NYCE-2005. At the moment more than 300 Mexican organizations have
adopted the national standard.

• COMPETISOFT Project (2006-2008): Taking as basis MoProSoft, this
project provided a common framework suitable for small Latin American
organizations dedicated to software development.

• ISO/IEC 29110:2011. Again with MoProSoft as basis the ISO/IEC TR 29110
Software Engineering — Lifecycle Profiles for Very Small Entities (VSEs) —
Part 5-1-2: Management and Engineering Guide - Basic VSE Profile was
developed.

6.5.1.2 Key conceptual elements

o System: the related concept is Software Product (8.2.1.2).

o Functionality: the related concept is Stakeholder Needs (8.2.1.3).

38 KUALI-BEH, Version 1.1

o People: the related concepts are Stakeholder (8.2.1.1), Practitioner (8.2.1.6) and
Work Team (8.2.1.5). Also, Software Project (8.2.1) and Knowledge and Skills
(8.2.3.6) were defined.

o Way of Working: the related concepts are Method (8.2.2) and Practice (8.2.3).
Also, the Method Enactment (9.3) was defined to describe in detail the
practitioners’ way of working.

6.5.1.3 Generic activities
The Practice (8.2.3) common concept can be used to define any type of practices. The
Guide (8.2.3.3), composed of activities, does not restrict the inclusion of any kind of
activities, so it is defined with a generic focus.
6.5.1.4 Kernel elements

a) The section Software Project Common Concepts Definition (8.2) includes a
concise definition for each concept.

b) The UML class diagram (10.2) represents the relationships between common
concepts.

c) Practice Instance Lifecycle (9.2) and Method Enactment (9.3) describe the
different states that the elements may take over time. Including the criteria
appropriate for each element.

d) The examples (8.5, 9.6 and Annex E) illustrate the application in practice,
including how it may be instantiated, tailored or extended to support the work of a
specific project team using specific practices.

e) Measures (8.2.3) consider appropriate metrics that can be used to assess progress,
quality or performance of a practice. Also, the Method Enactment Board (9.5.1)
and the Practice Instance Board (9.5.2) provide a control view of measures.

6.5.1.5 Scope and coverage
The common concepts, that compose this proposal, are sufficient to allow the
definition of practices and methods supporting projects of all sizes and a broad range
of lifecycle models and technologies used by significant segments of the software
industry.
6.5.1.6 Extension

a) The common concepts allow project and organization specific extensions in terms
of new elements and providing detail on existing ones (8.3.2) and (8.3.3).

b) The common concepts are adaptable to specific domains of application and to
projects (9.4).

6.5.2 The Language
6.5.2.1 The Language Definition

KUALI-BEH, Version 1.1 39

6.5.2.1.1 MOF metamodel
The Language was developed as the KUALI-BEH Ontology (10) based on
REFSENO. The requirement to use MOF is discussed in annex B.3 of this document.
6.5.2.1.2 Static and operational semantics
The Static View (8) and Operational View (9) lay as a basis for semantics.
6.5.2.1.3 Graphical syntax
The graphical concrete syntax that formally maps to the abstract syntax is provided
for practitioners (8.4).
6.5.2.1.4 Textual syntax
The textual concrete syntax that formally maps to the abstract syntax is provided as
an ontology (10).
6.5.2.1.5 SPEM 2.0 metamodel reuse
This requirement is discussed as an annex (B.2) of this document.
6.5.2.2 Language Features
6.5.2.2.1 Ease of use
The KUALI-BEH proposal was designed to be easy to use for practitioners at
different competency levels. A workshop to prove this requirement has been
developed and is discussed in annex C of this document.
6.5.2.2.2 Separation of views for practitioners and method engineers
The KUALI-BEH proposal provides features to express two different views of a
method, to method engineers (8 and mainly 10) and practitioners (8 and 9).
6.5.2.2.3 Specification of kernel elements

a) Formal (8.2-4, 9.2-5 and 10.2.1) and informal (8.1 and 9.1) descriptions of the
content and meaning of the elements.

b) The relationship of the elements (8.2 and 10.2.2).

c) States the practice and method elements may take over time and the events that
cause transitions among those states (9.2-3).

d) How the element is instantiated, including provisions for practice-specific
adaptation (tailoring) of the element, and the basis for comparing different
instantiations (9.2-4).

e) Metrics defined to assess various attributes of the use of the element (8.2).

6.5.2.2.4 Specification of practices

a) Description of the particular cross-cutting concern addressed by the practice and
the goal of the application of the practice (8.2.3).

b) The elements relevant to the practice and how they are instantiated for use in the
practice (8.2.3).

c) Any work products required by and produced by the practice (8.2.3.1-2, .7, .9).

40 KUALI-BEH, Version 1.1

d) The expected progress of work under the practice, including progress states, the
rules for transition between them and their relation to the states of relevant
elements (9.2 and 9.3).

e) Verification that the goal of the practice has been achieved in it application
(8.2.3).

6.5.2.2.5 Composition of practices

a) Identifying the overall set of concerns addressed by composing the practices
(8.2.2 and 8.2.6).

b) Merging two elements from different practices that should be the same in the
resulting practice, even if they have different contents defined in the practices
being composed (9.4.3).

c) Separating two elements from different practices that should be different in the
resulting practice (9.4.4).

d) Modifying an existing method by replacing a practice within that method by
another practice addressing a similar cross-cutting concern (8.2.6 and 9.4.2).

6.5.2.2.6 Enactment of methods

a) Tailoring the methods to be used on a project (9.4 and 8.2.6).

b) Communicating and discussing practices and methods among the project team
(9.3).

c) Managing and coordinating work during a project, including modifications to the
methods over the course of the project by further tailoring the use of the practices
in the method (9.3).

d) Monitoring the progress of the project (9.3 and 9.5).

6.5.3 Practices
6.5.3.1 Examples of Practices
The working examples show the use of the elements to describe practices (8.5, 9.6
and Annex E).
6.5.3.2 Existing Practices and Methods
The examples of how existing, ISO/IEC-style and Agile-style, practices and methods
can be migrated to the new proposed specification are shown (8.5, 9.6 and Annex E).

KUALI-BEH, Version 1.1 41

Annex B: Issues to be Discussed
(Informative)

Why KUALI-BEH is an Agile Creation and Enactment of Software Engineering Methods:

• Practitioners can start defining individual useful practices and then combine them in methods
(coherent, consistent and complete practice sets). The traditional approach is to begin with processes,
not easy to integrate, and the “agile” approach is to collect several practices (advices or techniques)
not necessary consistent and complete.

• Method improvement can be done “offline” through the modifications of the organizational Methods
and Practices Infrastructure, or “online” applying the method adaptation during its enactment. We
think that the online adaptation adds the real agility to the software project execution.

• Work team is empowered in our proposal, because the main decisions on what to do, how to do it,
who will do it, effort estimations, and others, are in their hands. So we try to follow the first principle
of the Agile Manifesto “individuals and interactions over processes and tools”.

B.1 Alternative naming issue
Our proposal does not use the “kernel” as a key word. We prefer to talk about “software project common
concepts” because it is more understandable for Software Engineering practitioners, as demonstrated in the
Collaborative Workshop, see Annex C.

The following can be alternatives for our software project common concepts:
• Guide – guidance
• Knowledge and Skills – competences
• Method – process (in use today) – methodology (in use decades before)
• Methods and Practices Infrastructure – organizational base of knowledge
• Practice – technique – work unit
• Practitioner – software engineer
• Project conditions – project constrains
• Software Product – software system
• Stakeholder – customer
• Stakeholder needs – customer needs – customer requirements – customer value
• Work Product – artifact

B.2 SPEM issue
We do not use SPEM 2.0 to define KUALI-BEH framework because we want to simplify the proposal as
much as possible, in order to make it clear for the practitioners from the first approach and get their
acceptance. KUALI-BEH at this point is not orthogonal or opposite to SPEM 2.0.

A deeper analysis shows that the difference between “process” and “method” in SPEM 2.0 is not clear. We
agree with SPEM 2.0 proposal at “activity”, “guide”, “work product”, “tool” or “role” level of abstraction for
example, but more abstract concepts are not easy to understand and some differences between them can be

42 KUALI-BEH, Version 1.1

identified. Table 19 presents a likely mapping between KUALI-BEH common concepts and SPEM 2.0
elements. The main differences between concepts, if exist, are shown in the additional column.

Table 19 — KUALI-BEH and SPEM 2.0 concepts

List of Concepts
SPEM 2.0 KUALI-BEH Differences identified

Activity Activity -
Artifact Work Product -

Deliverable Result
Not all the results are deliverable, but
all the deliverables can be results. The
use of the term Result makes simpler

the proposal
Guidance Guide -

Method Library Methods and Practices
Infrastructure

The Methods and Practices
Infrastructure can contain the Method

Library and more elements
Metric Measures -

Milestone Objective / Purpose
The usage of two terms, instead of

one, to define a goal, expects to make
a difference between method and

practice concepts
Outcome Result -

Role Definition Knowledge and Skills

Define the knowledge and skills
required to perform a guide, gives

flexibility to the organization to
organize their human resources as

roles or something else

Step Task
Both concepts define the smallest
action done by a practitioner, is a

naming difference only

Task Definition Practice
Both concepts are similar in level of

abstraction, but the practice concept
is fundamental in the RFP

Tool Definition Tool -

This proposal intends to be a simple standard that supports the majority of existent methods and practices in-
use in the industry nowadays. For that reason we have tried to preserve a minimal core that will support them.
As shown in sections 8.5, 9.6 and Annex E, using KUALI-BEH permitted to model perfectly existing
ISO/IEC-style and Agile-style practices and methods; moreover, it remains concordant with SPEM 2.0,
making it possible to reuse SPEM 2.0 metamodel.

B.3 MOF issue
Knowledge can be represented on different levels of abstraction. For the purpose of this proposal three
knowledge levels are used, the epistemological level, the conceptual level, and the linguistic level.

According to [10] the knowledge levels mentioned above are defined as follows:

• The epistemological level defines the epistemistic primitives such as concepts, attributes,
relationships, etc. Thus, the epistemological level is domain-independent.

• The conceptual level defines the standard vocabulary. It is domain-specific. Exemplary constructs of
this level (for the software engineering domain) are process models, measurement plans, code

KUALI-BEH, Version 1.1 43

modules, lessons learned, etc. As an explicit specification of a conceptualization, ontology is always
defined on this level. Thus, ontology can be defined using epistemistic primitives.

• Finally, the linguistic level defines concrete instances of the constructs defined on the conceptual
level. It is domain- and context-specific. An exemplary construct on this level (for a particular
software development organization) is a concrete measurement plan for measuring the effort of
project X at company Y.

On one hand, REFSENO makes possible the representation of this kind of knowledge, formalizing it as
ontology. REFSENO is a framework to conceptualize knowledge

On the other hand, MOF is a model to create models. It provides a metadata management framework, and a
set of metadata services to enable the development and interoperability of model and metadata driven
systems.

Taking into account that the purpose of this proposal is to conceptualize a specific domain, identifying its
concepts and relationships, the submission team decided to develop an ontology instead of a metamodel.

Nevertheless, the KUALI-BEH ontology can be mapped to the levels M1 and M2 of MOF. Table 20 presents
the mapping between MOF layers and the KUALI-BEH ontology.

Table 20 — MOF layers and KUALI-BEH ontology

MOF and KUALI-BEH Ontology Mapping
Layer MOF KUALI-BEH Ontology
M3 Meta-meta-model -
M2 Meta-model UML Class diagram
M1 Model Glossary of concepts, Relationships and Attributes
M0 Data Practitioners applying KUALI-BEH to describe their way of working

44 KUALI-BEH, Version 1.1

Annex C: Proof of Concept Statement
(Informative)

The design phase of this specification had been completed and prototyped.

The prototype was developed as a collaborative workshop, attended by software industry and research
community members. 16 participants (practitioners and method engineers) from 3 software industry
organizations plus 3 master students attended the workshop in order to understand the KUALI-BEH proposal
and apply it in their organizations.

The methodology of the workshop included on-site and virtual interactive sessions with practitioners and
method engineers in order to get feedback and improvements to the proposal. Besides, the participants carried
out activities and surveys in order to apply the proposal in real life situations and analyze its usefulness,
merits and drawbacks.

The workshop activities were divided into 8 two-hour sessions that took place every two weeks. The content
of each session was organized as follows:

• Webinar Briefing:
o Purpose exposition of the academy – industry collaborative research workshop
o KUALI-BEH presentation and invitation to join the workshop

• Session 1:
o Static view presentation

 Induction
 Software Project, Method and Practice common concepts
 Graphical Representation
 Practice Template

o Activity: Documenting a practice that you execute in your daily work using the practice
template

o Survey: Similarity between the proposal and the real life. Pertinence, appropriateness and
proficiency of the common concepts

• Session 2:
o Review and discussion of the session 1 Activity and Survey results
o Static view presentation

 Method Template
 Method properties
 Methods and Practices Infrastructure

o Activity: Documenting a method and its respective practices that you execute in your daily
work using the method template

o Survey: Pertinence and appropriateness of the method properties
• Session 3:

o Review and discussion of the session 2 Activity and Survey results
o Operational View presentation

 Induction
 Practice Instance Lifecycle
 Method Enactment

o Activity: Discussing about the differences and similarities between the real life and the
proposed method enactment

KUALI-BEH, Version 1.1 45

o Survey: Similarity between the proposal and the real life. Pertinence and appropriateness of
the practice instance lifecycle and method enactment

• Session 4:
o Review and discussion of the session 3 Activity and Survey results
o Operational View presentation

 Method Adaptation
 Practice notation and operations

o Activity: Applying the operations in order to adapt the previously documented method
o Survey: Pertinence and appropriateness of the method adaptation and proficiency of the

operations
• Session 5:

o Review and discussion of the session 4 Activity and Survey results
o Operational View presentation

 Practice Instance Board
 Method Enactment Board

o Activity: Adapting the practice instance and method enactment boards to your daily work
o Survey: Pertinence and appropriateness of the practice instance and method enactment

boards
• Session 6:

o Review and discussion of the session 5 Activity and Survey results
o Analysis and discussion of the suggestions and improvements to the proposal expressed by

the workshop participants
o Experiment Design presentation
o Activity: Carrying out the experiment in your organization

• Session 7:
o Review and discussion of the session 6 Activity results
o Presentation of the workshop results

At the end of the workshop, multiple benefits were identified and obtained by both parties.

On one hand, the software industry participants identified as benefits:
• Better organization of their knowledge though practices and methods
• Easy to transmit and apply their knowledge into the organization
• Foster the training of new people in the organization
• Attractiveness of the new approach to document the actual way of working, so to say, they document

what they actually do and not what they are supposed to do.

On the other hand, the proposal was improved taking into account 93 suggestions from the workshop
participants. The suggestions were obtained from the surveys applied to the participants or were directly
expressed by participant during the sessions.

After reviewing and analyzing the suggestions, the submission team applied fully 36 suggestions, while 28
were applied with some modifications and 29 were rejected. The suggestions were mainly directed to the
Method Enactment section. In order to obtain more feedback, proofs and improvements, a deeper experiment
is planned to be carried out during the third quarter of the year in one of the organizations that participated in
the workshop.

46 KUALI-BEH, Version 1.1

The proposal was presented, last April, at the XV Ibero-American Conference on Software Engineering
CIbSE’12 taking place in Buenos Aires, Argentina with a warm reception and considering KUALI-BEH to be
of great worth.

Also, the proposal had been reviewed by experts in the field from different countries obtaining important
feedback, support and offers to collaborate from individual researchers and important research groups,
especially from Alarcos research group, University of Castilla – La Mancha, headed by PhD Mario Piattini
Velthuis.

Moreover, at Science Faculty of the UNAM, the Software Engineering undergraduate course for the
Computer Science major is being redesigned using the KUALI-BEH approach. The theoretical part of the
course is presented as a set of practices and the experimental part is based on the practice instance execution
and method enactment. M. Sc. María Guadalupe Ibargüengoitia González is in charge of this project. The
students are learning and practicing a broad scope of real software engineering in the academic environment,
which, hopefully, will prepare them for their inclusion in the industry in a better manner.

Finally, we can mention that the design and construction of software tools to support KUALI-BEH has been
started. The prototype of this set of tools is focused on promoting and maximizing the interaction and
collaboration of the work team, integrating such multimedia elements as virtual boards and desktops. The aim
is to apply the technology that endorses participation, discussion, collaboration and cooperation. For this
project the PhD Fernando Gamboa Rodríguez, expert in human-machine interaction and creator of the
Classroom of the future from the Center of Applied Sciences and Technological Development (CCADET-
UNAM), is supporting the prototype development team.

The tools prototypes are being developed in conjunction with four master students and three researchers from
Graduate Science and Engineering Computing, UNAM. The first prototypes are planned to be delivered later
this year.

KUALI-BEH, Version 1.1 47

Annex D: Definitions and Sources Considered
(Informative)

List of definitions and sources used to create the definitions in this proposal.

D.1 Software Project
Project [9] – A temporary endeavor undertaken to create a unique product, service, or result.
Project [6] – Endeavour with defined start and finish dates undertaken to create a product or service in accordance
with specified resources and requirements.

D.2 Stakeholder
Stakeholder [6] – Is an individual or organization having a right, share, claim or interest in a system or in its
possession of characteristics that meet their needs and expectations.

D.3 Software Product
Software product [6] – Set of computer programs, procedures, and possibly associated documentation and data.

D.4 Stakeholder Needs
Need [7] –

1. Circumstances in which something is necessary; necessity.
2. A thing that is wanted or required.

Need [8] – Want, requirement, requisite, demand, exigency.

D.5 Project Conditions
Condition [7] –

1. The state of something or someone, with regard to appearance, fitness, or working order.
2. Circumstances affecting the functioning or existence of something.
3. A state of affairs that must exist before something else is possible.

Condition [8] – Circumstances, state, status, action.

D.6 Work Team
None

48 KUALI-BEH, Version 1.1

D.7 Practitioner
Practitioner [7] –

1. A person actively engaged in an art, discipline, or profession, especially medicine.
Practitioner [8] – Professional, expert, specialist.
Judgment [7] –

1. The ability to make considered decisions or form sensible opinions.
Judgment [8] – Discernment, experience, perception.

D.8 Method
Method [7] –

1. A particular procedure for accomplishing or approaching something.
2. Orderliness of thought or behaviour.

Method [8] – Means, procedure.
Method [1] – A method is a systematic way of doing things in a particular discipline. Software engineering methods
support tasks such as the development of a new software system, the maintenance of an existing system or even
the integration of an entire enterprise system architecture.
Methods at this level may be considered as composed from well-defined practices.
A method may be considered to be simply a composite practice targeted at the level of support of an entire
discipline.
Process [5] – Set of interrelated or interacting activities which transforms inputs into outputs.

D.9 Practice
Practice [7] –

1. The actual application or use of a plan or method, as opposed to the theories relating to it.
2. The customary or expected procedure or way of doing something.

Practice [8] – Routine, usual procedure.
Practice [1] – A practice is a general, repeatable approach to doing something with a specific purpose in mind,
providing a systematic and verifiable way of addressing a particular aspect of the work at hand. It should have a
clear goal expressed in terms of the results its use will achieve and provide guidance on what is to be done to
achieve the goal and to verify that it has been achieved. Such practices may include specific approaches for
software design, coding, testing at various levels, integration, organizing and managing the development team.

D.10 Input
None

D.11 Result
None

KUALI-BEH, Version 1.1 49

D.12 Guide
Guide [7] –

1. A directing principle or standard.
Guide [8] – Paradigm, pattern, advice.

D.13 Activity
Activity [7] –

1. A condition in which things are happening or being done.
2. An action taken in pursuit of an objective.

Activity [8] – State of being active.
Activity [4] – A set of cohesive tasks. Task is a requirement, recommendation, or permissible action, intended to
contribute to the achievement of one or more objectives of a process. A process activity is the first level of process
workflow decomposition and the second one is a task.
Activity [6] – Set of cohesive tasks of a process.
Activity [1] – An activity is a set of cohesive tasks intended to contribute to the achievement of one or more
objectives. An activity is the first level of method workflow decomposition and the second one is a task.

D.14 Task
Task [7] –

1. A piece of work.
Task [8] – Job or chore, often assigned.
Task [1] – Task is a required, recommended or permitted action.
Task [6] – Requirement, recommendation, or permissible action, intended to contribute to the achievement of one
or more outcomes of a process.

D.15 Knowledge and Skills
Knowledge [7] –

1. Information and skills acquired through experience or education.
2. Awareness or familiarity gained by experience.

Knowledge [8] – Person’s understanding; information, ability, attainments.
Skill [7] –

1. The ability to do something well; expertise or dexterity.
2. Train (a worker) to do a particular task.

Skill [8] – Ability, talent to do something, competence.

50 KUALI-BEH, Version 1.1

D.16 Work Product
Input Products [4] – Products required to perform the process and its corresponding source, which can be another
process or an external entity to the project.
Output Products [4] – Products generated by the process and its corresponding destination, which can be another
process or an external entity to the project.
Internal Products [4] – Products generated and consumed by the process.
Product [5] – Result of a process.

D.17 Condition
Condition [7] –

1. The state of something or someone, with regard to appearance, fitness, or working order.
2. Circumstances affecting the functioning or existence of something.
3. A state of affairs that must exist before something else is possible.

Condition [8] – Circumstances, state, status, action.

D.18 Tool
Tool [7] –

1. A device or implement, typically hand-held, used to carry out a particular function.
Tool [8] – Device, apparatus, instrument.

D.19 Methods and Practices Infrastructure
Practice Infrastructure [1] – A practice infrastructure would enable software developers to more quickly
understand, compose and compare individual practices and entire methods. It could also form the basis for the
appropriate governance of software organizations, while allowing their developers the freedom to use their
preferred practices, composed with those of their organizations. Further, it would allow the evaluation and
validation of comparable method and process elements, guide practical research to useful results and act as a
common context for training and education.

D.20 Pattern
Pattern [11] – A design pattern describes the problem, a solution to the problem consisting of a general
arrangement of objects and classes, when to apply the solution, and the consequences of applying the solution.
Pattern [12] – Each pattern is a three-part rule, which expresses a relation between a certain context, a certain
system of forces which occurs repeatedly in that context, and a certain software configuration which allows these
forces to resolve themselves.

KUALI-BEH, Version 1.1 51

D.21 Coherent
Coherent [7] –

1. (of an argument or theory) logical and consistent.
2. Holding together to form a whole.

Coherent [8] – Understandable.

D.22 Consistent
Consistent [7] –

1. Acting or done in the same way over time, especially so as to be fair or accurate.
2. (usu. consistent with) compatible or in agreement.
3. Not containing any logical contradictions.

Consistent [8] – Constant, regular.

D.23 Similar
Similar [7] –

1. Of the same kind in appearance, character, or quantity, without being identical.
Similar [8] – Analogous, coincident, congruent, matching.

D.24 Complete
Complete [7] –

1. Having all the necessary or appropriate parts; entire.
2. Having run its full course; finished.

Complete [8] – Total, not lacking.

52 KUALI-BEH, Version 1.1

Annex E: Static and Operational Views Examples
(Informative)

This annex contains two applications of the KUALI-BEH concepts. The first one is the use of KUALI-BEH
practice templates to express the Scrum events in a structured way. The second one is the adaptation of the
ISO/IEC 29110-5-1-2 Basic Profile Software Implementation process to the context of a fictional software
development organization. An example of the method enactment during a specific project execution is
provided. The aim is to illustrate the process and actions taken by the work team under particular
circumstances of a project.

E.1 Scrum Practices Static View Example
This section explains how the KUALI-BEH practice templates can be used to express the Scrum events. The
content of the practices is based on The Scrum Guide -The Definitive Guide to Scrum: The Rules of the Game
[13], developed and sustained by Ken Schwaber and Jeff Sutherland.

Tables 21-25 document the Sprint Planning Meeting (part 1 and 2), Daily Scrum Meeting, Sprint Review
Meeting and Sprint Retrospective Meeting events. The structured presentation of Scrum events through the
KUALI-BEH practice template format can be useful for educational and training purposes.

Table 21 — Sprint Planning Meeting Part 1 practice

SprintPM Part 1 Practice
Sprint Planning Meeting Part1
Objective
Forecast the functionality that will be developed during the Sprint and understand the work of the Sprint.

Input Result
Work Products

• Product Backlog
• Latest product Increment
• Projected capacity of the Development Team during

the Sprint
• Past performance of the Development Team

Conditions
• Product Owner and Scrum Team (Scrum Master and

Development Team) ready to attend the meeting.

Work Products
• Product Backlog elements selected for the Sprint
• Sprint Goal

Conditions
• Product Owner and Scrum Team agreement on the

Product Backlog elements selected for the Sprint and
the Sprint Goal.

Guide

Activities

KUALI-BEH, Version 1.1 53

1. Product Owner presents ordered Product Backlog items to the Development Team
2. Entire Scrum Team collaborates on understanding the work of the Sprint
3. The number of items is selected from the Product Backlog for the Sprint up to the Development Team. Only the Development

Team can assess what it can accomplish over the upcoming Sprint.
4. Scrum Team crafts a Sprint Goal.
Knowledge and Skills
Product Owner is the sole person responsible for managing the Product Backlog.
Development Team consists of professionals who do the work of delivering a potentially releasable Increment of “Done” product at the
end of each Sprint
Verification Criteria
Product Owner and Scrum Team agreed on the Product Backlog elements selected for the Sprint and the Sprint Goal.
Measures
Meeting duration [suggested time-box is four hours for a one-month Sprint]

Table 22 — Sprint Planning Meeting Part2 practice

SprintPM Part 2 Practice
Sprint Planning Meeting Part2

Objective
The Development Team decides how the selected functionality will be built into a “Done” product Increment during the Sprint. Sprint
Backlog composed of the Product Backlog items selected for this Sprint plus the plan for delivering them is defined.
Input Result
Work Products

• Product Backlog elements selected for the Sprint
• Sprint Goal

Conditions
• Product Owner and Scrum Team agreement on the

Product Backlog elements selected for the Sprint and
the Sprint Goal.

Work products
• Sprint Backlog
• Product Backlog items selected for this Sprint
• Plan for delivering them.

Conditions
• Product Owner and Scrum Team agreement on the

Sprint Backlog.
Guide

Activities
1. The Development Team starts by designing the system and the work needed to convert the Product Backlog into a working

product increment. Work may be of varying size, or estimated effort. However, enough work is planned during the Sprint Planning
meeting for the Development Team to forecast what it believes it can do in the upcoming Sprint.

2. Work planned for the first days of the Sprint by the Development Team is decomposed into units of one day or less by the end of
this meeting. The Development Team self-organizes to undertake the work in the Sprint Backlog, both during the Sprint Planning
Meeting and as needed throughout the Sprint.

3. The Product Owner may be present during the second part of the Sprint Planning Meeting to clarify the selected Product Backlog
items and to help make trade-offs. If the Development Team determines it has too much or too little work, it may renegotiate the
Sprint Backlog items with the Product Owner. The Development Team may also invite other people to attend in order to provide
technical or domain advice.

Knowledge and Skills
Product Owner is the sole person responsible for managing the Product Backlog
Development Team consists of professionals who do the work of delivering a potentially releasable Increment of “Done” product at the
end of each Sprint.
Verification Criteria
By the end of the Sprint Planning meeting, the Development Team should be able to explain to the Product Owner and Scrum Master
how it intends to work as a self-organizing team to accomplish the Sprint Goal and create the anticipated Increment.

54 KUALI-BEH, Version 1.1

Measures
Meeting duration [suggested time-box is four hours for a one-month Sprint]

Table 23 — Daily Scrum Meeting practice

DailyScrum Practice
Daily Scrum Meeting

Objective
Development Team meeting to synchronize activities and create (adapt) a plan for the next 24 hours. To assess progress toward the
Sprint Goal and to assess how progress is trending toward completing the work in the Sprint Backlog.
Input Result
Conditions

• Every Development Team member knows the answer
to the following questions:

o What has been accomplished since the
last meeting?

o What will be done before the next
meeting?

o What obstacles are in the way?
• Held at the same time and place each day.

Work products
• Sprint Backlog
• Product Backlog items selected for this Sprint
• Updated Plan for delivering them

Conditions
• Improved the Development Team’s level of project

knowledge.

Guide
Activities
1. During the meeting, each Development Team member explains:

o What has been accomplished since the last meeting?
o What will be done before the next meeting?
o What obstacles are in the way?

2. The Development Team often meets immediately after the Daily Scrum to re-plan the rest of the Sprint’s work.
Knowledge and Skills
Development Team consists of professionals who do the work of delivering a potentially releasable Increment of “Done” product at
the end of each Sprint.
Verification Criteria
Development Team should be able to explain to the Product Owner and Scrum Master how it intends to work together as a self-
organizing team to accomplish the goal and create the anticipated increment in the remainder of the Sprint.
Measures
Meeting duration [suggested time-box 15 minutes].

Table 24 — Sprint Review Meeting practice

SprintReview Practice
Sprint Review Meeting

KUALI-BEH, Version 1.1 55

Objective
To inspect the Increment and adapt the Product Backlog, if needed. Scrum Team and stakeholders collaborate about what was done in
the Sprint. Based on that and any changes to the Product Backlog during the Sprint, attendees collaborate on the next things that could be
done.
Input Result
Work products

• Product Backlog
• Sprint Backlog
• Increment done.

Conditions
• Stakeholders and Scrum Team ready to attend the

meeting
• Held at the end of the Sprint.

Work products
• Product Backlog revised.

Conditions
• Increment presented.
• Agreement on probable Product Backlog items for the

next Sprint.
• Product Backlog adjusted to meet new opportunities, if

needed.
Guide

Activities
1. The Product Owner identifies what has been “Done” and what has not been “Done”;
2. The Development Team discusses what went well during the Sprint, what problems it ran into, and how those problems were solved;
3. The Development Team demonstrates the work that it has ”Done” and answers questions about the Increment;
4. The Product Owner discusses the Product Backlog as it stands. He or she projects likely completion dates based on progress to

date. He or she may also adjust the overall Product Backlog to meet new opportunities ; and,
5. The entire group collaborates on what to do next, so that the Sprint Review provides valuable input to subsequent Sprint Planning

Meetings.
Knowledge and Skills
Product Owner is the sole person responsible for managing the Product Backlog
Stakeholders involved in the project.
Scrum Team consists of professionals who do the work of delivering a potentially releasable Increment of “Done” product at the end of
each Sprint.
Verification Criteria
Product Backlog was revised and the probable Product Backlog items for the next Sprint were defined.
The Product Backlog may also be adjusted overall to meet new opportunities.
Measures
Meeting duration [suggested time-box four hours for a one-month Sprint].

Table 25 — Sprint Retrospective Meeting practice

SprintRetrospective Practice
Sprint Retrospective Meeting

Objective

56 KUALI-BEH, Version 1.1

The Sprint Retrospective is held by the Scrum Team to inspect itself and create a plan for improvements to be enacted during the next
Sprint. The goals of the meeting are:

• Inspect how the last Sprint went with regards to people, relationships, process, and tools;
• Identify and order the major items that went well and potential improvements; and,
• Create a plan for implementing improvements to the way the Scrum Team does its work.

Input Result
Work products

• Sprint Backlog

Conditions
• Scrum Team ready to attend the meeting.
• Held after the Sprint Review and prior to the next

Sprint Planning Meeting.

Work products
• Improvements to the way the Scrum Team does its

work.

Conditions
• Scrum Team agreed on improvements for the next

Sprint.

Guide

Activities
1. The Scrum Master encourages the Scrum Team to improve, within the Scrum process framework, its development process and

practices to make it more effective and enjoyable for the next Sprint. The tasks to do are:
a. Inspect how the last Sprint went with regards to people, relationships, process, and tools;
b. Identify and order the major items that went well and potential Improvements; and,
c. Create a plan for implementing improvements to the way the Scrum Team does its work.

Knowledge and Skills
Scrum Master is responsible for ensuring Scrum is understood and enacted.

Development Team consists of professionals who do the work of delivering a potentially releasable Increment of “Done” product at the
end of each Sprint.
Verification Criteria
The Scrum Team should have identified Improvements that it will implement in the next Sprint and agreed on them.
Measures
Meeting duration [suggested time-box three-hour for a one-month Sprint].

E.2 ISO/IEC 29110-5-1-2 Basic Profile Static and
Operational Views Example
The aim of this section is to describe how the KUALI-BEH static and operational views can be used for the
definition of practices and methods and their enactment in the context of a fictional software development
organization. An example of the method enactment during a specific project execution is provided. The aim is
to illustrate the process and actions taken by the work team under particular circumstances of a project.

E.2.1 ISO/IEC 29110 5-1-2 Basic Profile Static View
The aim of this section is to describe the practices that compose a method in the context of a fictional
software development organization. The KUALI-BEH Software Project Common Concepts and templates are
used for defining practices and methods.

The context of the organization, the origin of the method and practices and their templates are presented.

E.2.1.1 KUALI-BEHSoftware Organizational Context
KUALI-BEHSoftware is a small software development entity with 20 employees. The organization has
started to execute projects following the Basic Profile of ISO/IEC 29110-5-1-2 standard [4]. This standard is

KUALI-BEH, Version 1.1 57

applicable to Very Small Entities (VSEs). VSEs are enterprises, organizations, departments or projects
involving up to 25 people.

E.2.1.2 KUALI-BEHSoftware Method and Practices
ISO/IEC 29110-5-1-2 Basic Profile standard includes two processes: Project Management and Software
Implementation. These processes specify a set of roles, work products and activities broken down in tasks.
The organization has been using the activities, work products and roles described in both processes; however
the practitioners have customized them in accordance with their experience and knowledge and have
originated their own practices.

KUALI-BEHSoftware decides to create a repository of their practices in order to organize, consult and
improve them. This repository is called Methods and Practices Infrastructure (KUALI-BEHSoftware-MPI).
All practitioners of the organization participate in the creation of KUALI-BEHSoftware-MPI contributing
with their knowledge and experience. The intention is to take advantage of the past projects execution,
centralize the expertise and organize all this knowledge for future benefit and training.

The first method to be included in KUALI-BEHSoftware-MPI is related to their core business to develop a
new software product.

E.2.1.3 New Software Product Development Method Definition
In order to define the method for developing a new software product (NewSoftDev), the practitioners selected
the following activities of ISO/IEC 29110-5-1-2 Basic Profile Software Implementation process as candidates
for their practices:

• Software Requirements Analysis (SRA)
• Software Architectural and Detailed Design (SADD)
• Software Construction (SC)
• Software Integration and Tests (SIT)
• Product Delivery (PD)

The method and practice templates (see 8.3.2 and 8.3.3) and symbols (see 8.4) were used to document
NewSoftDev and its practices. Table 26 shows the NewSoftDev method and Figure 18 presents the
relationships among practice inputs and results.

Table 26 — NewSoftDev method

NewSoftDev Method
Method for developing a new software product.

Purpose
Systematically perform the analysis, design, construction, integration and tests activities for new software products according to the
specified requirements.
Input Result
Stakeholders product needs: Software Configuration

58 KUALI-BEH, Version 1.1

Statement of Work
• Product description: purpose of the product and general

customer requirements.
• Scope description of what is included and what is not
• Project objectives
• Deliverables list of products to be delivered to customer

- Requirements Specification
- Software Design
- Software Components
- Software
- Test Cases and Test Procedures
- Test Report
- Maintenance Documentation

Project conditions:
• Project conditions established by the customer.
• Schedule of the Project.
• Identification of Project Risks.

Practices
Software Requirements Analysis (SRA)
Software Architectural and Detailed Design (SADD)
Software Construction (SC)
Software Integration and Tests (SIT)
Product Delivery (PD)

Figure 18 – NewSoftDev method practices inputs and results relationship

The practices are shown: Table 27 - SRA, Table 28 - SADD, Table 29 - SC, Table 30 - SIT and Table 31 -
PD.

Table 27 — Software Requirements Analysis practice

SRA Practice
Software Requirement Analysis

Objective
Define software requirements, analyze them for correctness and testability, get their approval by the customer, establish them as
baseline and communicate them.
Input Result
Stakeholders product needs Requirements Specification

Guide
Activities

KUALI-BEH, Version 1.1 59

1. Document or update the Requirements Specification.
Identify and consult information sources (customer, users, previous systems, documents, etc.) in order to get new requirements.
Analyze the identified requirements to determinate the scope and feasibility.
Generate or update the Requirements Specification.
2. Verify and obtain approval of the Requirements Specification.
Verify the correctness and testability of the Requirements Specification and its consistency with the Stakeholders product needs.
Additionally, review that requirements are complete, unambiguous and not contradictory.
3. Validate and obtain approval of the Requirements Specification
Validate that Requirements Specification satisfies needs and agreed upon expectations, including the user interface usability.
4. Incorporate the Requirements Specification to the Software Configuration in the baseline.
Knowledge and Skills
Knowledge and experience in eliciting, specifying and analyzing requirements.
Verification Criteria
Consistency between Requirements Specification and Stakeholders product needs.
Measures
Effort in hours to elaborate, document, verify and validate the Requirements Specification.

Table 28 — Software Architectural and Detailed Design practice

SADD Practice
Software Architectural and Detailed Design

Objective
Develop the software architectural and detailed design, describing the Software Components and internal and external interfaces of
them and establish the baseline of the software design. Prepare Test cases and test Procedure based on Requirements Specification
Input Result
Requirements Specification Software Design

Test Cases and Test Procedures
Guide

Activities
1. Understand Requirements Specification.
2. Document or update the Software Design:
Analyze the Requirements Specification to generate the architectural design, its arrangement in subsystems and software components
defining the internal and external interfaces. Describe in detail, the appearance and the behavior of the interface, based on the
Requirements Specification in a way that resources for its implementation can be foreseen.
Provide the detail of software components and their interfaces to allow the construction in an evident way.
3. Verify and obtain approval of the Software Design
Verify correctness of Software Design documentation, its feasibility and consistency with their Requirement Specification.
4. Establish or update Test Cases and Test Procedures for testing based on Requirements Specification. Customer provides testing data,
if needed.
5. Verify and obtain approval of the Test Cases and Test Procedures.
Verify consistency among Requirements Specification and Test Cases and Test Procedures.
6. Incorporate the Software Design and the Test cases and Test Procedures to the Software Configuration as part of the baseline.
Incorporate the Test Cases, and Test Procedures to the Project Repository.
Knowledge and Skills

60 KUALI-BEH, Version 1.1

Knowledge and experience in the design of software architecture, planning and performing system tests.
Verification Criteria
Consistency between Software Design and Requirements Specification.
Consistency between Test Cases and Test Procedures and Requirements Specification.
Measures
Effort in hours to elaborate, document and verify Software Design and Test Cases and Test Procedures.

Table 29 — Software Construction practice

SC Practice
Software Construction

Objective
Produce Software Components defined by design. Define and perform unit test to verify the consistency with the design.
Input Result
Software Design Software Components

Guide
Activities

1. Understand Software Design.
2. Construct or update Software Components based on the detailed part of the Software Design.
3. Design or update unit test cases and apply them to verify that the Software Components implements the detailed part of the Software
Design.
4. Correct the defects found until successful unit test (reaching exit criteria) is achieved.
5. Incorporate Software Components to the Software Configuration as part of the baseline.
Knowledge and Skills
Knowledge and experience in programming and unit testing.
Verification Criteria
Consistency between Software Components and Software Design.
Measures
Effort in hours to understand the Software Design, to construct the Software Components, to design unit test cases, to apply them and to
correct defects.

Table 30 — Software Integration and Tests practice

SIT Practice
Software Integration and Tests

Objective

KUALI-BEH, Version 1.1 61

Produce software performing integration of the Software Components and verify using Test Cases and Test Procedures. Record results
in the Test Report and correct defects.
Input Result
Requirements Specification
Software Design
Software Components
Test Cases and Test Procedures

Software Configuration
- Requirements Specification
- Software Design
- Software Components
- Test Cases and Test Procedures
- Software

Guide
Activities

1. Understand Test Cases and Test Procedures.
Set or update the testing environment.
2. Integrate the Software using Software Components and update Test Cases and Test Procedures for integration testing, as needed.
3. Perform Software tests using Test Cases and Test Procedures and document results in Test Report.
4. Correct the defects found and perform regression test until exit criteria is achieved.
5. Incorporate the Test Cases and Test Procedures, Test Report and Software to the Software Configuration as part of the baseline.
Knowledge and Skills
Knowledge and experience in programming, integration and system testing.
Verification Criteria
Consistency between Software and Test Cases and Tests Procedures.
Measures
Effort in hours to understand the Test Cases and Test Procedures, to perform the tests and integrate Software Components.

Table 31 — Product Delivery practice

PD Practice
Product Delivery

Objective
Deliver the software product and applicable documentation to the customer.
Input Result
Software Configuration

- Requirements Specification
- Software Design
- Software Components
- Test Cases and Test Procedures
- Software

Software Configuration
- Requirements Specification
- Software Design
- Software Components
- Test Cases and Test Procedures
- Software
- Maintenance Documentation

Guide
Activities

1. Understand Software Configuration.
2. Document the Maintenance Documentation or update the current one.
3. Verify and obtain approval of the Maintenance Documentation.
Verify consistency of Maintenance Documentation with Software Configuration.

62 KUALI-BEH, Version 1.1

4. Incorporate the Maintenance Documentation as baseline for the Software Configuration.
5. Perform delivery according to delivery instructions agreed with the customer.
Knowledge and Skills
Knowledge and experience in software configuration and maintenance documentation elaboration.
Verification Criteria
Consistency between Maintenance Documentation and Software Configuration.
Fulfillment of the product delivery
Measures
Effort in hours to deliver the software product, document and verify the Maintenance Documentation

E.2.1.4 Product Delivery and Acceptance Tests Practice Definition
Sometimes the KUALI-BEHSoftware practitioners are required by the customer to participate in acceptance
tests. Therefore, they decide to define an extra practice that will be included as an individual practice in
KUALI-BEHSoftware-MPI. This practice has to cover product delivery, acceptance test planning and
performing. Table 32 shows the resulting practice.

Table 32 — Product Delivery and Acceptance Test practice

PDAT Practice
Product Delivery and Acceptance Tests

Objective
Perform the acceptance test and deliver the software product and applicable documentation to the customer.
Input Result
Software Configuration

- Requirements Specification
- Software Design
- Software Components
- Test Cases and Test Procedures
- Software

Software Configuration
- Requirements Specification
- Software Design
- Software Components
- Test Cases and Test Procedures
- Software
- Maintenance Documentation

Guide
Activities

1. Define an acceptance test strategy with the customer.
Participants, sessions, tasks to be performed and the management of issues and defects.
2. Elaborate or update the Test Procedures considering Requirements Specification and test strategy.
3. Perform the acceptance tests and elaborate a Test Report.
4. Correct defects agreed with the customer.
5. Understand Software Configuration.
6. Document the Maintenance Documentation or update the current one.
7. Verify and obtain approval of the Maintenance Documentation.
Verify consistency of Maintenance Documentation with Software Configuration.

KUALI-BEH, Version 1.1 63

8. Incorporate the Maintenance Documentation, Test Procedures and Software as baseline for the Software Configuration.
9. Perform delivery according to delivery instructions agreed with the customer.
Knowledge and Skills
Knowledge and experience in acceptance testing, software configuration and maintenance documentation elaboration.
Verification Criteria
Consistency between Maintenance Documentation and Software Configuration.
Fulfillment of the product delivery.
Measures
Effort in hours to planning and perform the acceptance test.
Effort in hours to deliver the software product, to document and to verify the Maintenance Documentation.

E.2.2 ISO/IEC29110 5-1-2 Basic Profile Operational View
This section provides an example of the method enactment during a specific project execution. The aim is to
illustrate the process and actions taken by the work team under particular circumstances of a project.

The example is based on the characteristics of KUALI-BEHSoftware organization. First, the context of the
project is explained, and then the main steps of the method enactment are described. All the names mentioned
in the example (organization, client, project and work team members) are fictional.

E.2.2.1 DistEdSoft Project Context
The School of Distance Education (DistEd) is a customer of KUALI-BEHSoftware organization. DistEd
needs new software that will support on-line teaching operations. Both organizations agreed to start the
DistEdSoft project to develop a new software product.

KUALI-BEHSoftware assigned seven practitioners to the project work team (WT). Before the beginning of
the DistEdSoft project the DistEd school representatives and WT agreed on stakeholder needs and project
conditions. Table 33 presents the details of the initial project template.

Table 33 — DistEdSoft project

DistEdSoft Software Project
Project to develop the School of Distance Education software.

Stakeholder
DistEd
Start date Finish date
02/07/2011 08/15/2011
Input Result
Stakeholders needs:
• New software product to implement the functionalities:

o Enrollment.

DistEdSoft software product

64 KUALI-BEH, Version 1.1

o On-line courses.
o Student support.
o Graduate exams.

Project conditions:
• Enrollment and On-line courses are the highest priority

requirements.
• Delivery deadline of the highest priority requirements

cannot be changed.
Method
Undefined.
Work Team
Olivia
Laura
Jaime
Nicolás
Martín
Ana
Susana

E.2.2.2 DistEdSoft Project Method Enactment
Getting to know the new project conditions and stakeholder needs, the WT is ready to start DistEdSsoft
project execution.

This section shows the examples of main steps performed by the WT during the DistEdSoft project method
enactment.

WT selects a method
The WT consults the KUALI-BEHSoftware-MPI and selects the method for developing a new software
product NewSoftDev (see Table 26).

WT adapts the NewSoftDev method to the project context
The WT analyzes the method and the project information in order to establish work to be done. The
practitioners identify the following inputs:

• Stakeholder needs. The statement of work contains the general customer requirements:
R1. Enrollment.
R2. On-line courses.
R3. Student support.
R4. Graduate exams.

• Project conditions. The project particular conditions are:
C1. R1 and R2 are the highest priority requirements established by the customer.
C2. Delivery deadline of the highest (R1, R2) requirements cannot be changed.

The WT decides to divide the work into two increments, the software system covering R1 and R2 will be
developed as the first increment and R3 and R4 as the second one. The decision is based on the requirements
priority established by the customer.

The C2 condition is an important issue. To mitigate the risk of missing the first delivery deadline, the WT
decides to prepare the test cases and procedures while the design is being developed.

KUALI-BEH, Version 1.1 65

The WT decides to adapt the method splitting the Software Architectural and Detailed Design (SADD)
practice in two practices: Architectural and Detailed Design (ADD) and Tests Cases and Test Procedures
Elaboration (TCTPE).

In summary, the WT makes two decisions: to repeat (iterate) method practices for two increments and to split
the practice SADD in two practices for the first increment.

The adaptation of the selected method is carried out as follows:

Step 1. SADD practice splitting. Figure 19 shows the result of this operation.

Step 2. The resulting practices are instantiated as work units planned to be executed into DistEdSoft
project. Each practice instance lifecycle is activated. Figures 20 and 21 show the adapted
NewSoftDev method practice instances.

Figure 19 – Splitting operation of NewSoftDev method adaptation Step 1

66 KUALI-BEH, Version 1.1

Figure 20 – 1st increment practices instances of NewSoftDev method adaptation Step 2

Figure 21 – 2nd increment practices instances of NewSoftDev method adaptation Step 2

When the WT completed the method adaptation, the practitioners visualized the work to be done during the
project on the NewSoftDev method enactment board (see Table 34). All the practice instances are in
Instantiated state and the method enactment state is Adapted.

Table 34 — NewSoftDev method enactment board with practice instances at Instantiated column

DistEdSoft-NewSoftDev Method Enactment Board 02/07/2011 08/15/2011
Input Result 129 days left
Stakeholders product needs: DistEdSoft Software Configuration

- Requirements Specification
- Software Design
- Software Components Software
- Test Cases and Test Procedures
- Test Report
- Maintenance Documentation

Statement of Work
General customer requirements:

R1. Enrollment.
R2. On-line courses.
R3. Student support.
R4. Graduate exams.

Project conditions:
Project conditions established by the customer

C1. Enrollment and On-line courses are the highest
priority requirements.

C2. Delivery deadline of the highest priority
requirements cannot be changed.

Enactment States
 Adapted Ready to Begin In Progress Progress Snapshot Global

Progress Instantiated
20%

Can Start
40%

In Execution
60%

In Verification
80%

Stand By
N/A

Cancelled
N/A

Finished
100%

1st. increment

1 SRA1 20

2 ADD1 20

3 TCTPE1 20

4 SC1 20

5 SIT1 20

6 PD1 20

KUALI-BEH, Version 1.1 67

2nd. Increment

7 SRA2 20

8 SADD2 20

9 SC2 20

10 SIT2 20

11 PD2 20
Total 220/1100

 Work Product / Conditions
 Statement of Work (R1, R2, R3 and R4) –Agreed

WT assigns inputs to practice instances
The WT has available inputs to assign them to some practice instances:

• The Stakeholders product needs R1 and R2 can be assigned as inputs to SRA1 instance (1st.
increment). Table presents SRA1 instance board.

Table 35 — SRA1 instance board in Can-Start state

DistEdSoft -NewSoftDev-SRA1 Practice Instance Board
Input Result
R1, R2 Requirements Specification (R1, R2)
Work Team Practitioners Measures
Undefined Estimated Actual

Undefined Undefined
Activity Progress

Activities Progress Responsible Comments
1. Document or update the
Requirements Specification.

2. Verify and obtain approval
of the Requirements
Specification.

3. Validate and obtain
approval of the Requirements
Specification.

4. Incorporate the
Requirements Specification to
the Software Configuration in
the baseline.

Practice Instance States
Instantiated

20%
Can Start

40%
In Execution

60%
In Verification

80%
Stand By

N/A
Cancelled

N/A
Finished

100%
 X

When the WT assigns the inputs to SRA1, this instance is included in Can-Start column of the NewSoftDev
method enactment board. Can-Start is a practice instance state and Ready-to-Begin is a state associated to the
method enactment.

68 KUALI-BEH, Version 1.1

WT chooses practice instances, estimates and agrees work distribution
The practice instances in the Can-Start state can be chosen by the WT. In this case, the practitioners estimate
the SRA1 practice instance measures and agree who will execute them. SRA1 changes to the In-Execution
state. Table 36 shows the current state, the responsible practitioners and the estimation associated to measures
of the SRA1 instance.

Table 36 — SRA1 instance board in In-Execution state

DistEdSoft-NewSoftDev-SRA1 Practice Instance Board

Input Result
R1, R2 Requirements Specification (R1, R2)
Work Team Practitioners Measures
Olivia Laura
Jaime Nicolás
Martín Ana
Susana Jaime

Estimated Actual
Effort: 46 man-hours
Start date: 02/09/2011
Finish date:02/19/2011

Undefined

Activity Progress
Activities Progress Responsible Comments

1. Document or update the
Requirements Specification.

Olivia Laura
Jaime Nicolás
Martín Ana
Susana

2. Verify and obtain approval
of the Requirements
Specification.

Olivia
Laura
Martín

3. Validate and obtain
approval of the Requirements
Specification.

 Susana

4. Incorporate the
Requirements Specification to
the Software Configuration in
the baseline.

 Jaime

Practice Instance States
Instantiated

20%
Can Start

40%
In Execution

60%
In Verification

80%
Stand By

N/A
Cancelled

N/A
Finished

100%
 X

When WT chooses SRA1, this instance is included at In-Execution column of the NewSoftDev method
enactment board. In-Execution is a practice instance state and In-Progress is a state associated to method
enactment.

The practitioners perform the activities and tasks included in the guide of practice SRA. The WT registers the
progress of each activity in Activity Progress columns of the SRA1 practice instance board. When the result
Requirements Specification (R1, R2) is produced, the responsible practitioners have to verify it according to
guide activities. In this moment the SRA1 instance changes to In-Verification state.

WT produces verified results and collects data measures
When the instance of SRA1 practice produced its verified result and collects measures data, the SRA1
changed to Finished state (see Table 37).This change originates a Progress Snapshot of the NewSoftDev

KUALI-BEH, Version 1.1 69

method enactment and the SRA1 instance moves to Finished column in the NewSoftDev method enactment
board (see Table 38).

Table 37 — SRA1 instance board in Finished state

SDESoft-NewSoftDev-SRA1 Practice Instance Board

Input Result
R1, R2 Requirements Specification (R1, R2)
Work Team Practitioners Measures
Olivia Laura
Nicolás Martín
Ana Susana
Jaime

Estimated Actual
Effort: 46 man-hours
Start date: 02/09/2011
Finish date:02/19/2011

Effort: 77 man-hours
Start date: 02/09/2011
Finish date:02/23/2011

Activity Progress
Activities Progress Responsible Comments

1. Document or update the
Requirements Specification. 100%

Olivia Laura
Jaime Nicolás
Martín Ana
Susana

2. Verify and obtain approval
of the Requirements
Specification.

100%
Olivia
Laura
Martín

3. Validate and obtain
approval of the Requirements
Specification.

100% Susana

4. Incorporate the
Requirements Specification to
the Software Configuration in
the baseline.

100% Jaime

Practice Instance States
Instantiated

20%
Can Start

40%
In Execution

60%
In Verification

80%
Stand By

N/A
Cancelled

N/A
Finished

100%
 X

Table 38 — NewSoftDev method enactment board with practice instances at Finished column

DistEdSoft-NewSoftDev Method Enactment Board 02/07/2011 08/15/2011
Input Result 119 days left
Stakeholders product needs: DistEdSoft Software Configuration

- Requirements Specification
- Software Design
- Software Components Software
- Test Cases and Test Procedures
- Test Report
- Maintenance Documentation

Statement of Work
General customer requirements:

R1. Enrollment.
R2. On-line courses.
R3. Student support.
R4. Graduate exams.

Project conditions:
Project conditions established by the customer

C1. Enrollment and On-line courses are the highest
priority requirements.

70 KUALI-BEH, Version 1.1

C2. Delivery deadline of the highest priority
requirements cannot be changed.

Enactment States
 Adapted Ready to Begin In Progress Progress Snapshot Global

Progress Instantiated
20%

Can Start
40%

In Execution
60%

In Verification
80%

Stand By
N/A

Cancelled
N/A

Finished
100%

1st. increment

1 SRA1 100

2 ADD1 20

3 TCTPE1 20

4 SC1 20

5 SIT1 20

6 PD1 20

2nd. increment

7 SRA2 20

8 SADD2 20

9 SC2 20

10 SIT2 20

11 PD2 20

Total 300/1100
 Work Product / Conditions
 Statement of Work (R1, R2, R3 and R4) –Agreed

Requirements Specification (R1, R2) -Validated

WT assigns results as inputs
The result produced by SRA1 instance is the input to both instances ADD1 and TCTPE1. Therefore, the
SRA1 instance result is assigned to ADD1 and TCTPE1 instances, so these instances change to Can-Start
state. The WT decides to work on the execution of both instances simultaneously. So, five practitioners
choose ADD1 and two choose TCTPE1. All practitioners make the needed estimations and ADD1 and
TCTPE1 instances change to In-Execution state. Tables 39 and 40 show ADD1 and TCTPE1 practice
instance boards respectively.

Table 39 — ADD1 instance board in In-Execution state

DistEdSoft -NewSoftDev-ADD1 Practice Instance Board
Input Result
Requirements Specification (R1, R2) Software Design (R1, R2)
Work Team Practitioners Measures
Laura
Nicolás
Ana
Susana
Olivia

Estimated Actual
Effort: 104 man-hours
Start date: 02/26/2011
Finish date:03/19/2011

Effort: 140 man-hours
Start date: 02/26/2011
Finish date:03/23/2011

Activity Progress
Activities Progress Responsible Comments

KUALI-BEH, Version 1.1 71

1. Understand Requirements
Specification.

 Laura Nicolás
Ana Susana
Olivia

2. Document or update the
Software Design

 Laura Nicolás
Ana Susana
Olivia

3. Verify and obtain approval
of the Software Design.

 Nicolás
Laura

6. Incorporate the Software
Design to the Software
Configuration as part of the
baseline.

 Susana

Practice Instance States
Instantiated

20%
Can Start

40%
In Execution

60%
In Verification

80%
Stand By

N/A
Cancelled

N/A
Finished

100%
 X

Table 40 — TCTPE1 instance board in In-Execution state

DistEdSoft -NewSoftDev-TCTPE1 Practice Instance Board
Input Result
Requirements Specification (R1, R2) Test Cases and Test Procedures (R1, R2)
Work Team Practitioners Measures
Martín
Jaime

Estimated Actual
Effort: 39 man-hours
Start date: 02/26/2011
Finish date:02/05/2011

Effort: 54 man-hours
Start date: 02/26/2011
Finish date:03/07/2011

Activity Progress
Activities Progress Responsible Comments

4. Establish or update Test
Cases and Test Procedures
for testing based on
Requirements Specification.
Customer provides testing
data, if needed.

 Martín
Jaime

5. Verify and obtain approval
of the Test Cases and Test
Procedures.

 Martín
Jaime

6. Incorporate the Test cases
and Test Procedures to the
Software Configuration as part
of the baseline

 Martín
Jaime

Practice Instance States
Instantiated

20%
Can Start

40%
In Execution

60%
In Verification

80%
Stand By

N/A
Cancelled

N/A
Finished

100%
 X

The ADD1 and TCTPE1 instances state changes are applied in the NewSoftDev method enactment board,
moving these instances to the In-Execution column of the In-Progress state. Table 41 shows this movement in
the method enactment board.

72 KUALI-BEH, Version 1.1

Table 41 — NewSoftDev method enactment board with ADD1 and TC instance at In Execution column

DistEdSoft-NewSoftDev Method Enactment Board 02/07/2011 08/15/2011
Input Result 118 days left.
Stakeholders product needs: DistEdSoft Software Configuration

- Requirements Specification
- Software Design
- Software Components Software
- Test Cases and Test Procedures
- Test Report
- Maintenance Documentation

Statement of Work
General customer requirements:

R1. Enrollment.
R2. On-line courses.
R3. Student support.
R4. Graduate exams.

Project conditions:
Project conditions established by the customer

C1. Enrollment and On-line courses are the highest
priority requirements.

C2. Delivery deadline of the highest priority
requirements cannot be changed.

Enactment States
 Adapted Ready to Begin In Progress Progress Snapshot Global

Progress Instantiated
20%

Can Start
40%

In Execution
60%

In Verification
80%

Stand By
N/A

Cancelled
N/A

Finished
100%

1st. increment
1 SRA1 100
2 ADD1 60
3 TCTPE1 60
4 SC1 20
5 SIT1 20
6 PD1 20

2nd. increment
7 SRA2 20
8 SADD2 20
9 SC2 20
10 SIT2 20
11 PD2 20

Total 380/1100
 Work Product / Conditions
 Statement of Work (R1, R2, R3 and R4) –Agreed

Requirements Specification (R1, R2) -Validated

The ADD1, TCTPE1, SC1, SIT1 and PD1 instances continue their lifecycle to reach the Finished state during
the 1st increment.

WT adapts the NewSoftDev method for the second time

KUALI-BEH, Version 1.1 73

When the SRA1, ADD1, TCTPE1, SC1, SIT1 and PD1 practice instances of the 1st increment are finished,
the Progress Snapshot of the method enactment is analyzed by the WT.

At this moment, the customer has requested that the practitioners of WT participate in the acceptance tests.
Therefore, the WT decides to adapt the planned practice instances performing the substitution operation. The
Product Delivery (PD) practice is to be substituted by Product Delivery and Acceptance Tests (PDAT)
practice. The product delivery, planning and performing of acceptance testing will be performed through
PDAT practice (see Table 32, section E.2.1.4).

The adaptation of the NewSoftDev method is carried out as follows:

Step 1. The PD practice is substituted by PDAT. Figure 22 shows this operation.

Step 2. The 2nd increment practices are instantiated according to the substitution operation of Step 1.
Every practice instance lifecycle is activated. Figure 23 shows the NewSoftDev method practice
instances.

Figure 22 – Substitution operation of NewSoftDev method adaptation

Figure 23 – 2nd increment practices instances of NewSoftDev method adaptation Step

74 KUALI-BEH, Version 1.1

The column Adapted of NewSoftDev method enactment board has to be changed to include the resulting
practice instances of Step 2 (see Table 42).

Table 42 — NewSoftDev method enactment board with practice instances of 2nd increment

DistEdSoft-NewSoftDev Method Enactment Board 02/07/2011 08/15/2011
Input Result 58 days left
Stakeholders product needs: DistEdSoft Software Configuration

- Requirements Specification
- Software Design
- Software Components Software
- Test Cases and Test Procedures
- Test Report
- Maintenance Documentation

Statement of Work
General customer requirements:

R1. Enrollment.
R2. On-line courses.
R3. Student support.
R4. Graduate exams.

Project conditions:
Project conditions established by the customer

C1. Enrollment and On-line courses are the highest
priority requirements.

C2. Delivery deadline of the highest priority
requirements cannot be changed.

Enactment States
 Adapted Ready to Begin In Progress Progress Snapshot Global

Progress Instantiated
20%

Can Start
40%

In Execution
60%

In Verification
80%

Stand By
N/A

Cancelled
N/A

Finished
100%

1st. increment
1 SRA1 100

2 ADD1 100

3 TCTPE1 100

4 SC1 100

5 SIT1 100

6 PD1 100

2nd. increment
7 SRA2 20

8 SADD2 20

9 SC2 20

10 SIT2 20

11 PDAT2 20

Total 700/1100
 Work Product / Conditions
 Statement of Work (R1, R2, R3 and R4) –Agreed

Software Configuration
- Requirements Specification (R1, R2) –Validated
- Software Design (R1, R2) –Validated
- Software Components (R1, R2) - Corrected
- Test Cases and Test Procedures (R1, R2)- Verified
- Software (R1, R2) -Corrected
- Maintenance Documentation (R1, R2) –Verified

KUALI-BEH, Version 1.1 75

WT produces the software product
Once all practice instances have completed their lifecycles, the method enactment is finished and the
DistEdSoft software product is delivered to the customer. Table 43 shows the NewSoftDev method enactment
board with all practices instances in the Finished state

Table 43 — Final NewSoftDev method enactment board

DistEdSoft-NewSoftDev Method Enactment Board 02/07/2011 08/15/2011
Input Result 0 days left
Stakeholders product needs: DistEdSoft Software Configuration

- Requirements Specification
- Software Design
- Software Components Software
- Test Cases and Test Procedures
- Test Report
- Maintenance Documentation

Statement of Work
General customer requirements:

R1. Enrollment.
R2. On-line courses.
R3. Student support.
R4. Graduate exams.

Project conditions:
Project conditions established by the customer

C1. Enrollment and On-line courses are the highest
priority requirements.

C2. Delivery deadline of the highest priority
requirements cannot be changed.

Enactment States
 Adapted Ready to Begin In Progress Progress Snapshot Global

Progress Instantiated
20%

Can Start
40%

In Execution
60%

In Verification
80%

Stand By
N/A

Cancelled
N/A

Finished
100%

1st. increment
1 SRA1 100

2 ADD1 100

3 TCTPE1 100

4 SC1 100

5 SIT1 100

6 PD1 100

2nd. increment
7 SRA2 100

8 SADD2 100

9 SC2 100

10 SIT2 100

11 PDAT2 100

Total 1100/1100
 Work Product / Conditions
 Statement of Work (R1, R2, R3 and R4) –Agreed

Software Configuration
- Requirements Specification (R1, R2, R3, R4) –Validated
- Software Design (R1, R2, R3, R4) –Validated
- Software Components (R1, R2, R3, R4) - Corrected
- Test Cases and Test Procedures (R1, R2, R3, R4)- Verified

76 KUALI-BEH, Version 1.1

- Software (R1, R2, R3, R4) -Corrected
- Maintenance Documentation (R1, R2, R3, R4) –Verified

KUALI-BEH, Version 1.1 77

References
1. A Foundation for the Agile Creation and Enactment of Software Engineering Methods, http://www.omg.org/cgi-

bin/doc?ad/2011-6-26 16/05/11
2. Oktaba, H., García, F., Piattini, M., Pino, F., Ruíz, F., Alquicira, C.: Software Process Improvement: The

COMPETISOFT Project. IEEE Computer, Vol 40, No. 10 (2008)
3. Mexican National Standard NMX-I-059-NYCE-2005 Modelo de Procesos para la Industria del Software (MoProSoft)

(2005)
4. Standard ISO/IEC 29110-5-1-2 Software engineering -- Lifecycle profiles for Very Small Entities (VSEs) –

Management and Engineering Guide: Generic profile group: Basic Profile,
http://standards.iso.org/ittf/PubliclyAvailableStandards/c051153_ISO_IEC_29110-5-1-2_2011.zip 07/08/12 (2011)

5. Standard ISO 9000:2005 Quality management systems -- Fundamentals and vocabulary (2005)
6. Standard ISO/IEC 12207:2008 Systems and software engineering -- Software life cycle processes (2008)
7. Oxford Concise Oxford English Dictionary © 2008 Oxford University Press (2008)
8. Thesaurus Roget's 21st Century Thesaurus © 2011, Third Edition Philip Lief Group (2011)
9. Project Management Institute. A Guide to the Project Management Body of Knowledge: PMBOK Guide. Third

Edition, Newtown Square, Pennsylvania, Project Management Institute (2004)
10. Tautz, C. and Wangenheim, C.G., REFSENO: A Representation Formalism for Software Engineering Ontologies, in

Technical IESE-Report 015.98/E, Fraunhofer Institute for Experimental Software Engineering (1998)
11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional (1995)
12. Alexander, C.: The Timeless Way of Building. Oxford University Press (1979)
13. The Scrum Guide -The Definitive Guide to Scrum: The Rules of the Game, developed and sustained by Ken Schwaber

and Jeff Sutherland, http://www.scrum.org/storage/scrumguides/Scrum%20Guide%20-%202011.pdf 07/08/12 (2011)

